Suppr超能文献

用于锂硫电池的具有超高比表面积的小麦秸秆衍生的氮、氧和硫三掺杂多孔碳

Wheat Straw-Derived N-, O-, and S-Tri-doped Porous Carbon with Ultrahigh Specific Surface Area for Lithium-Sulfur Batteries.

作者信息

Chen Feng, Ma Lulu, Ren Jiangang, Zhang Mou, Luo Xinyu, Li Bing, Song Zhiming, Zhou Xiangyang

机构信息

School of Resource and Environment, Henan University of Engineering, No. 1, Xianghe Road, Zhengzhou 451191, China.

School of Metallurgy and Environment, Central South University, Lushan South Street 932, Yuelu District, Changsha 410083, China.

出版信息

Materials (Basel). 2018 Jun 11;11(6):989. doi: 10.3390/ma11060989.

Abstract

Recently, lithium-sulfur (Li-S) batteries have been greeted by a huge ovation owing to their very high theoretical specific capacity (1675 mAh·g) and theoretical energy density (2600 Wh·kg). However, the full commercialization of Li-S batteries is still hindered by dramatic capacity fading resulting from the notorious “shuttle effect” of polysulfides. Herein, we first describe the development of a facile, inexpensive, and high-producing strategy for the fabrication of N-, O-, and S-tri-doped porous carbon (NOSPC) via pyrolysis of natural wheat straw, followed by KOH activation. The as-obtained NOSPC shows characteristic features of a highly porous carbon frame, ultrahigh specific surface area (3101.8 m²·g), large pore volume (1.92 cm³·g), good electrical conductivity, and in situ nitrogen (1.36 at %), oxygen (7.43 at %), and sulfur (0.7 at %) tri-doping. The NOSPC is afterwards selected to fabricate the NOSPC-sulfur (NOSPC/S) composite for the Li-S batteries cathode material. The as-prepared NOSPC/S cathode delivers a large initial discharge capacity (1049.2 mAh·g at 0.2 C), good cycling stability (retains a reversible capacity of 454.7 mAh·g over 500 cycles at 1 C with a low capacity decay of 0.088% per cycle), and superior rate performance (619.2 mAh·g at 2 C). The excellent electrochemical performance is mainly attributed to the synergistic effects of structural restriction and multidimensional chemical adsorptions for cooperatively repressing the polysulfides shuttle.

摘要

最近,锂硫(Li-S)电池因其极高的理论比容量(1675 mAh·g)和理论能量密度(2600 Wh·kg)而备受赞誉。然而,由于多硫化物臭名昭著的“穿梭效应”导致的显著容量衰减,Li-S电池的全面商业化仍受到阻碍。在此,我们首先描述了一种简便、廉价且高产的策略,通过天然麦秸热解,随后进行KOH活化,制备N、O和S三掺杂多孔碳(NOSPC)。所获得的NOSPC具有高度多孔碳框架的特征、超高比表面积(3101.8 m²·g)、大孔体积(1.92 cm³·g)、良好的导电性以及原位氮(1.36 at%)、氧(7.43 at%)和硫(0.7 at%)三掺杂。之后选择NOSPC来制备用于Li-S电池正极材料的NOSPC-硫(NOSPC/S)复合材料。所制备的NOSPC/S正极具有较大的初始放电容量(在0.2 C时为1049.2 mAh·g)、良好的循环稳定性(在1 C下500次循环中保持454.7 mAh·g的可逆容量,每循环容量衰减率低至0.088%)以及优异的倍率性能(在2 C时为619.2 mAh·g)。优异的电化学性能主要归因于结构限制和多维化学吸附的协同效应,以协同抑制多硫化物穿梭。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0988/6025088/0efeac7a0b5a/materials-11-00989-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验