Suppr超能文献

正弦形高频节律性视觉刺激模式在正常受试者稳态视觉诱发电位反应分析及疲劳率评估中的应用

Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects.

作者信息

Keihani Ahmadreza, Shirzhiyan Zahra, Farahi Morteza, Shamsi Elham, Mahnam Amin, Makkiabadi Bahador, Haidari Mohsen R, Jafari Amir H

机构信息

Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

Research Center for Biomedical Technologies and Robotics, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Front Hum Neurosci. 2018 May 28;12:201. doi: 10.3389/fnhum.2018.00201. eCollection 2018.

Abstract

Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23-30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

摘要

最近基于脑电图稳态视觉诱发电位(EEG - SSVEP)信号的脑机接口(BCI)研究使用了高频方波视觉刺激来减轻主观疲劳。然而,尚未考虑总谐波失真(THD)的影响。与阴极射线管(CRT)和液晶显示器(LCD)相比,发光二极管(LED)屏幕能以更好的刷新率显示高频波。在本研究中,我们通过LED呈现低THD率的高频正弦波简单和节律模式,以分析正常受试者的SSVEP反应并评估主观疲劳。我们使用3序列高频正弦波(25、30和35赫兹)模式来设计视觉刺激。选择了9种刺激模式,3种简单模式(上述3种频率各自重复,例如P25 - 25 - 25)和6种节律模式(6种不同序列中的所有频率,例如P25 - 30 - 35)。设计了一个低THD率(<0.1%)的硬件装置,以便在LED上呈现这些模式。招募了22名正常受试者(年龄23 - 30岁(25 ± 2.1岁))。在呈现每种刺激模式后,使用视觉模拟量表(VAS)进行主观疲劳评估。采用功率谱密度(PSD)、典型相关分析(CCA)和最小绝对收缩和选择算子(LASSO)方法来分析SSVEP反应。对不同视觉刺激模式的包括SSVEP特征和疲劳率的数据进行了统计学评估。所有9种视觉刺激模式均引发了SSVEP反应。总体而言,PSD的准确率为88.35%,CCA和LASSO的准确率(对于时间窗>1秒)>90%。低THD率的高频节律模式组的准确率(99.24%)高于简单模式组(98.48%)。重复测量方差分析显示节律模式特征之间存在显著差异(<0.0005)。总体而言,节律模式组的VAS为[3.85 ± 2.13],与简单模式组[3.96 ± 2.21]相比无显著差异(P = 0.63)。节律模式组的组内VAS变化较低(最小值 = P25 - 30 - 35 [2.90 ± 2.45],最大值 = P35 - 25 - 30 [4.81 ± 2.65]),且单个模式的VAS最小(P25 - 30 - 35)。总体而言,节律模式组和简单模式组的准确率较高且相似。节律性刺激模式的疲劳率略低于简单模式,但差异不显著。我们得出结论,对于人类受试者的SSVEP - BCI研究,节律性和简单性视觉高频正弦波刺激都需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82e6/5985331/b787dc0350fe/fnhum-12-00201-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验