Suppr超能文献

迈向基于视觉诱发电位(VEP)的脑机接口应用中使用动态刺激的新模态:引入基于准周期和混沌视觉诱发电位的脑机接口

Toward New Modalities in VEP-Based BCI Applications Using Dynamical Stimuli: Introducing Quasi-Periodic and Chaotic VEP-Based BCI.

作者信息

Shirzhiyan Zahra, Keihani Ahmadreza, Farahi Morteza, Shamsi Elham, GolMohammadi Mina, Mahnam Amin, Haidari Mohsen Reza, Jafari Amir Homayoun

机构信息

Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany.

Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.

出版信息

Front Neurosci. 2020 Nov 17;14:534619. doi: 10.3389/fnins.2020.534619. eCollection 2020.

Abstract

Visual evoked potentials (VEPs) to periodic stimuli are commonly used in brain computer interfaces for their favorable properties such as high target identification accuracy, less training time, and low surrounding target interference. Conventional periodic stimuli can lead to subjective visual fatigue due to continuous and high contrast stimulation. In this study, we compared quasi-periodic and chaotic complex stimuli to common periodic stimuli for use with VEP-based brain computer interfaces (BCIs). Canonical correlation analysis (CCA) and coherence methods were used to evaluate the performance of the three stimulus groups. Subjective fatigue caused by the presented stimuli was evaluated by the Visual Analogue Scale (VAS). Using CCA with the M2 template approach, target identification accuracy was highest for the chaotic stimuli ( = 86.8, = 1.8) compared to the quasi-periodic ( = 78.1, = 2.6, = 0.008) and periodic ( = 64.3, = 1.9, = 0.0001) stimulus groups. The evaluation of fatigue rates revealed that the chaotic stimuli caused less fatigue compared to the quasi-periodic ( = 0.001) and periodic ( = 0.0001) stimulus groups. In addition, the quasi-periodic stimuli led to lower fatigue rates compared to the periodic stimuli ( = 0.011). We conclude that the target identification results were better for the chaotic group compared to the other two stimulus groups with CCA. In addition, the chaotic stimuli led to a less subjective visual fatigue compared to the periodic and quasi-periodic stimuli and can be suitable for designing new comfortable VEP-based BCIs.

摘要

用于脑机接口的周期性刺激视觉诱发电位(VEP),因其具有高目标识别准确率、较少训练时间和低周围目标干扰等良好特性而被广泛使用。传统的周期性刺激由于持续且高对比度的刺激会导致主观视觉疲劳。在本研究中,我们将准周期性和混沌复合刺激与用于基于VEP的脑机接口(BCI)的常见周期性刺激进行了比较。使用典型相关分析(CCA)和相干方法来评估这三组刺激的性能。通过视觉模拟量表(VAS)评估所呈现刺激引起的主观疲劳。使用带有M2模板方法的CCA,与准周期性刺激组(准确率 = 78.1,标准差 = 2.6,p = 0.008)和周期性刺激组(准确率 = 64.3,标准差 = 1.9,p = 0.0001)相比,混沌刺激的目标识别准确率最高(准确率 = 86.8,标准差 = 1.8)。疲劳率评估显示,与准周期性刺激组(p = 0.001)和周期性刺激组(p = 0.0001)相比,混沌刺激引起的疲劳更少。此外,与周期性刺激相比,准周期性刺激导致更低的疲劳率(p = 0.011)。我们得出结论,与其他两组刺激相比,使用CCA时混沌组的目标识别结果更好。此外,与周期性和准周期性刺激相比,混沌刺激导致的主观视觉疲劳更少,可适用于设计新型舒适的基于VEP的BCI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8103/7718037/769ab518d90b/fnins-14-534619-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验