Shirzhiyan Zahra, Keihani Ahmadreza, Farahi Morteza, Shamsi Elham, GolMohammadi Mina, Mahnam Amin, Haidari Mohsen Reza, Jafari Amir Homayoun
Computational Neuroscience, Institute of Medical Technology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany.
Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Front Neurosci. 2020 Nov 17;14:534619. doi: 10.3389/fnins.2020.534619. eCollection 2020.
Visual evoked potentials (VEPs) to periodic stimuli are commonly used in brain computer interfaces for their favorable properties such as high target identification accuracy, less training time, and low surrounding target interference. Conventional periodic stimuli can lead to subjective visual fatigue due to continuous and high contrast stimulation. In this study, we compared quasi-periodic and chaotic complex stimuli to common periodic stimuli for use with VEP-based brain computer interfaces (BCIs). Canonical correlation analysis (CCA) and coherence methods were used to evaluate the performance of the three stimulus groups. Subjective fatigue caused by the presented stimuli was evaluated by the Visual Analogue Scale (VAS). Using CCA with the M2 template approach, target identification accuracy was highest for the chaotic stimuli ( = 86.8, = 1.8) compared to the quasi-periodic ( = 78.1, = 2.6, = 0.008) and periodic ( = 64.3, = 1.9, = 0.0001) stimulus groups. The evaluation of fatigue rates revealed that the chaotic stimuli caused less fatigue compared to the quasi-periodic ( = 0.001) and periodic ( = 0.0001) stimulus groups. In addition, the quasi-periodic stimuli led to lower fatigue rates compared to the periodic stimuli ( = 0.011). We conclude that the target identification results were better for the chaotic group compared to the other two stimulus groups with CCA. In addition, the chaotic stimuli led to a less subjective visual fatigue compared to the periodic and quasi-periodic stimuli and can be suitable for designing new comfortable VEP-based BCIs.
用于脑机接口的周期性刺激视觉诱发电位(VEP),因其具有高目标识别准确率、较少训练时间和低周围目标干扰等良好特性而被广泛使用。传统的周期性刺激由于持续且高对比度的刺激会导致主观视觉疲劳。在本研究中,我们将准周期性和混沌复合刺激与用于基于VEP的脑机接口(BCI)的常见周期性刺激进行了比较。使用典型相关分析(CCA)和相干方法来评估这三组刺激的性能。通过视觉模拟量表(VAS)评估所呈现刺激引起的主观疲劳。使用带有M2模板方法的CCA,与准周期性刺激组(准确率 = 78.1,标准差 = 2.6,p = 0.008)和周期性刺激组(准确率 = 64.3,标准差 = 1.9,p = 0.0001)相比,混沌刺激的目标识别准确率最高(准确率 = 86.8,标准差 = 1.8)。疲劳率评估显示,与准周期性刺激组(p = 0.001)和周期性刺激组(p = 0.0001)相比,混沌刺激引起的疲劳更少。此外,与周期性刺激相比,准周期性刺激导致更低的疲劳率(p = 0.011)。我们得出结论,与其他两组刺激相比,使用CCA时混沌组的目标识别结果更好。此外,与周期性和准周期性刺激相比,混沌刺激导致的主观视觉疲劳更少,可适用于设计新型舒适的基于VEP的BCI。