Hammel K E, Tien M, Kalyanaraman B, Kirk T K
J Biol Chem. 1985 Jul 15;260(14):8348-53.
The hemoprotein ligninase of Phanerochaete chrysosporium Burds. catalyzes the oxidative cleavage of lignin model dimers between C alpha and C beta of their propyl side chains. The model dimers hitherto used give multiple products and complex stoichiometries upon enzymatic oxidation. Here we present experiments with a new model dimer, 1-(3,4-dimethoxyphenyl)-2-phenylethanediol (dimethoxyhydrobenzoin, DMHB) which is quantitatively cleaved by ligninase in air to give benzaldehyde and veratraldehyde according to the stoichiometry: 2DMHB + O2----2PhCHO + 2Ph(OMe)2CHO. Catalytic amounts of H2O2 are required for this aerobic reaction. Under anaerobic conditions, ligninase uses H2O2 as the oxidant for cleavage: DMHB + H2O2----PhCHO + Ph(OMe)2CHO. Electron spin resonance experiments done in the presence of spin traps, 2-methyl-2-nitrosopropane or 5,5-dimethyl-1-pyrroline-N-oxide, show that C alpha-C beta cleavage yields alpha-hydroxybenzyl radicals as intermediate products. Under anaerobic conditions, these radicals react further to give the final aldehyde products. In air, O2 adds to the carbon-centered radicals, probably giving alpha-hydroxybenzylperoxyl radicals which fragment to yield superoxide, benzaldehyde, and veratraldehyde. These results lead us to propose a mechanism for C alpha-C beta cleavage in which attack by ligninase and H2O2 on the methoxylated ring of DMHB yields a cation radical, which then cleaves to give either benzaldehyde and an alpha-hydroxy(dimethoxybenzyl) radical or veratraldehyde and an alpha-hydroxybenzyl radical (cf. Kersten, P. J., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609-2612; Snook, M. E., and Hamilton, G. A. (1974) J. Am. Chem. Soc. 96, 860-869). Similar mechanisms probably apply to the enzymatic C alpha-C beta cleavage of natural lignin.
黄孢原毛平革菌(Phanerochaete chrysosporium Burds.)的血红素蛋白木质素酶催化木质素模型二聚体丙基侧链的α-碳和β-碳之间的氧化裂解。迄今为止所使用的模型二聚体在酶促氧化时会产生多种产物和复杂的化学计量关系。在此,我们展示了用一种新的模型二聚体1-(3,4-二甲氧基苯基)-2-苯基乙二醇(二甲氧基氢化苯偶姻,DMHB)所做的实验,该二聚体在空气中被木质素酶定量裂解,根据化学计量关系生成苯甲醛和藜芦醛:2DMHB + O₂ → 2PhCHO + 2Ph(OMe)₂CHO。此需氧反应需要催化量的H₂O₂。在厌氧条件下,木质素酶使用H₂O₂作为氧化剂进行裂解:DMHB + H₂O₂ → PhCHO + Ph(OMe)₂CHO。在自旋捕获剂2-甲基-2-亚硝基丙烷或5,5-二甲基-1-吡咯啉-N-氧化物存在下进行的电子自旋共振实验表明,α-碳-β-碳裂解产生α-羟基苄基自由基作为中间产物。在厌氧条件下,这些自由基进一步反应生成最终的醛产物。在空气中,O₂加成到以碳为中心的自由基上,可能生成α-羟基苄基过氧自由基,其分解产生超氧化物、苯甲醛和藜芦醛。这些结果使我们提出了一种α-碳-β-碳裂解的机制,其中木质素酶和H₂O₂对DMHB的甲氧基化环的攻击产生一个阳离子自由基,然后该阳离子自由基裂解生成苯甲醛和一个α-羟基(二甲氧基苄基)自由基或藜芦醛和一个α-羟基苄基自由基(参见Kersten, P. J., Tien, M., Kalyanaraman, B., and Kirk, T.K. (1985) J. Biol. Chem. 260, 2609 - 2612; Snook, M. E., and Hamilton, G. A. (1974) J. Am. Chem. Soc. 96, 860 - 869)。类似的机制可能适用于天然木质素的酶促α-碳-β-碳裂解。