Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , 76344 Karlsruhe , Germany.
Joint Research Laboratory Nanomaterials at Technische Universität Darmstadt (TUD) , 64287 Darmstadt , Germany.
ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22408-22418. doi: 10.1021/acsami.8b04892. Epub 2018 Jun 22.
Oxide semiconductors typically show superior device performance compared to amorphous silicon or organic counterparts, especially when they are physical vapor deposited. However, it is not easy to reproduce identical device characteristics when the oxide field-effect transistors (FETs) are solution-processed/printed; the level of complexity further intensifies with the need to print the passive elements as well. Here, we developed a protocol for designing the most electronically compatible electrode/channel interface based on the judicious material selection. Exploiting this newly developed fabrication schemes, we are now able to demonstrate high-performance all-printed FETs and logic circuits using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor, indium tin oxide (ITO) as electrodes, and composite solid polymer electrolyte as the gate insulator. Interestingly, all-printed FETs demonstrate an optimal electrical performance in terms of threshold voltages and device mobility and may very well be compared with devices fabricated using sputtered ITO electrodes. This observation originates from the selection of electrode/channel materials from the same transparent semiconductor oxide family, resulting in the formation of In-Sn-Zn-O (ITZO)-based-diffused a-IGZO-ITO interface that controls doping density while ensuring high electrical performance. Compressive spectroscopic studies reveal that Sn doping-mediated excellent band alignment of IGZO with ITO electrodes is responsible for the excellent device performance observed. All-printed n-MOS-based logic circuits have also been demonstrated toward new-generation portable electronics.
氧化物半导体通常比非晶硅或有机半导体具有更优异的器件性能,尤其是在物理气相沉积时。然而,当氧化物场效应晶体管(FET)采用溶液处理/印刷工艺时,很难复制相同的器件特性;随着需要打印无源元件,其复杂性进一步加剧。在这里,我们开发了一种基于明智的材料选择来设计最具电子兼容性的电极/沟道界面的方案。利用这种新开发的制造方案,我们现在能够使用非晶铟镓锌氧化物(a-IGZO)半导体、氧化铟锡(ITO)作为电极以及复合固态聚合物电解质作为栅极绝缘体来演示高性能全印刷 FET 和逻辑电路。有趣的是,全印刷 FET 在阈值电压和器件迁移率方面表现出最佳的电性能,并且可以与使用溅射 ITO 电极制造的器件相媲美。这种观察结果源于从相同的透明半导体氧化物族中选择电极/沟道材料,从而形成基于 In-Sn-Zn-O(ITZO)的扩散 a-IGZO-ITO 界面,该界面控制掺杂密度,同时确保高的电性能。压缩光谱研究表明,Sn 掺杂介导的 IGZO 与 ITO 电极之间的优异能带排列是观察到优异器件性能的原因。还展示了基于全印刷 n-MOS 的逻辑电路,以满足新一代便携式电子产品的需求。