Zarbakhsh Payam, Addeh Abdoljalil
Department of Electrical and Electronic Engineering, Eastern Mediterranean University, KKTC, Via Mersin-10, Gazimağusa, Turkey.
Faculty of Electrical and Computer Engineering, Babol University of Technology, Babol, Iran.
J Cancer Res Ther. 2018 Apr-Jun;14(3):625-633. doi: 10.4103/0973-1482.183561.
Breast cancer is a major cause of mortality in young women in the developing countries. Early diagnosis is the key to improve survival rate in cancer patients.
In this paper an intelligent system is proposed to breast cancer tumor type recognition.
The proposed system includes three main module: The feature selection module, the classifier module and the optimization module. Feature selection plays an important role in pattern recognition systems. The better selection of features usually results in higher accuracy rate.
In the proposed system we used a new graph based feature selection approach to select the best features. In the classifier module, the radial basis function neural network (RBFNN)is used as classifier. In RBF training, the number of RBFs and their respective centers and widths (Spread) have very important role in its performance. Therefore, artificial bee colony (ABC) algorithm is proposed for selecting appropriate parameters of the classifier.
The RBFNN with optimal structure and the selected feature classified the tumors with 99.59% accuracy.
The proposed system is tested on Wisconsin breast cancer database (WBCD) and the simulation results show that the recommended system exhibits a high accuracy.
The proposed system has a high recognition accuracy and therefore we recommend the proposed system for breast cancer tumor type recognition.
在发展中国家,乳腺癌是年轻女性死亡的主要原因。早期诊断是提高癌症患者生存率的关键。
本文提出一种用于乳腺癌肿瘤类型识别的智能系统。
所提出的系统包括三个主要模块:特征选择模块、分类器模块和优化模块。特征选择在模式识别系统中起着重要作用。更好地选择特征通常会带来更高的准确率。
在所提出的系统中,我们使用一种基于新图形的特征选择方法来选择最佳特征。在分类器模块中,径向基函数神经网络(RBFNN)用作分类器。在RBF训练中,RBF的数量及其各自的中心和宽度(扩展)对其性能起着非常重要的作用。因此,提出了人工蜂群(ABC)算法来选择分类器的合适参数。
具有最优结构和所选特征的RBFNN对肿瘤进行分类的准确率为99.59%。
在所提出的系统在威斯康星乳腺癌数据库(WBCD)上进行了测试,仿真结果表明所推荐的系统具有很高的准确率。
所提出的系统具有很高的识别准确率,因此我们推荐所提出的系统用于乳腺癌肿瘤类型识别。