Department of Industrial Engineering and Management, National Chin-Yi University of Technology, 35, Lane 215, Section 1, Chung-San Rd., Taiping, Taichung 411 Taiwan, Republic of China.
J Med Syst. 2010 Oct;34(5):865-73. doi: 10.1007/s10916-009-9301-x. Epub 2009 May 5.
The aim of this research is to combine the feature selection (FS) and optimization algorithms as the optimal tool to improve the learning performance like predictive accuracy of the Wisconsin Breast Cancer Dataset classification. An ensemble of the reduced data patterns based on FS was used to train a neural network (NN) using the Levenberg-Marquardt (LM) and the Particle Swarm Optimization (PSO) algorithms to devise the appropriate NN training weighting parameters, and then construct an effective Neural Network classifier to improve the Wisconsin Breast Cancers' classification accuracy and efficiency. Experimental results show that the accuracy and AROC improved emphatically, and the best performance in accuracy and AROC are 98.83% and 0.9971, respectively.
本研究旨在将特征选择 (FS) 和优化算法相结合,作为提高学习性能(如预测准确率)的最佳工具,应用于威斯康星州乳腺癌数据集的分类。基于 FS 的降维数据模式的集合被用于使用 Levenberg-Marquardt (LM) 和粒子群优化 (PSO) 算法训练神经网络 (NN),以设计适当的 NN 训练权重参数,然后构建有效的神经网络分类器,以提高威斯康星州乳腺癌的分类准确性和效率。实验结果表明,准确性和 AROC 得到了显著提高,最佳的准确性和 AROC 性能分别为 98.83%和 0.9971。