Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36 , D-45470 Mülheim an der Ruhr , Germany.
Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1 , 45470 Mülheim an der Ruhr , Germany.
J Chem Theory Comput. 2018 Jul 10;14(7):3686-3702. doi: 10.1021/acs.jctc.8b00249. Epub 2018 Jun 28.
In this study, a detailed calibration of the performance of modern ab initio wave function methods in the domain of X-ray absorption spectroscopy (XAS) is presented. It has been known for some time that for a given level of approximation, for example, using time-dependent density functional theory (TD-DFT) in conjunction with a given basis set, there are systematic deviations of the calculated transition energies from their experimental values that depend on the functional, the basis set, and the chosen treatment of scalar relativistic effects. This necessitates a linear correlation for a given element/functional/basis set combination to be established before chemical applications can be performed. This is a laborious undertaking since it involves sourcing trustworthy experimental data, lengthy geometry optimizations, and detailed comparisons between theory and experiment. In this work, reference values for the element-specific shifts of all the first-row transition metal atoms and the main group elements C, N, O, F, Si, P, S, and Cl have been computed by using a protocol that is based on the complete active space configuration interaction in conjunction with second-order N-electron valence state perturbation theory (CASCI/NEVPT2). It is shown that by extrapolating the results to the basis set limit of the method and taking into account scalar relativistic effects via the second-order Douglas-Kroll-Hess (DKH2) corrections, the predicted element shifts are on average less than 0.75 eV across all the absorption edges and a very good agreement between theory and experiment in all the studied XAS cases is observed. The transferability of these errors to molecular systems is thoroughly investigated. The constructed CASCI/NEVPT2 database of element shifts is used to evaluate the performance and to automatically calibrate prior to comparison with the experiment two commonly used methods in X-ray spectroscopy, namely, DFT/Restricted open shell configuration interaction singles (DFT/ROCIS) and TD-DFT methods.
在这项研究中,详细校准了现代从头算波函数方法在 X 射线吸收光谱学 (XAS) 领域的性能。众所周知,对于给定的近似水平,例如,在使用含时密度泛函理论 (TD-DFT) 结合给定基组的情况下,计算出的跃迁能与实验值之间存在系统偏差,这种偏差取决于函数、基组和所选的标量相对论效应处理方法。这就需要在进行化学应用之前,为给定的元素/函数/基组组合建立线性相关关系。由于它涉及到获取可靠的实验数据、冗长的几何优化以及理论与实验之间的详细比较,因此这是一项艰巨的任务。在这项工作中,通过使用基于完整活性空间组态相互作用结合二阶 N 电子价态微扰理论 (CASCI/NEVPT2) 的协议,计算了所有第一过渡金属原子和主族元素 C、N、O、F、Si、P、S 和 Cl 的特定元素位移的参考值。结果表明,通过将结果外推到方法的基组极限,并通过二阶道格拉斯-克罗尔-赫斯 (DKH2) 修正考虑标量相对论效应,预测的元素位移在所有吸收边平均小于 0.75 eV,并且在所有研究的 XAS 情况下,理论与实验之间存在非常好的一致性。彻底研究了这些误差在分子系统中的可转移性。所构建的 CASCI/NEVPT2 元素位移数据库用于评估性能,并在与实验进行比较之前自动校准,这两种方法常用于 X 射线光谱学,即 DFT/受限开壳组态相互作用单重态 (DFT/ROCIS) 和 TD-DFT 方法。