Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
J Chem Phys. 2020 Mar 21;152(11):114107. doi: 10.1063/1.5129029.
In this work, we present a combined experimental and theoretical study on the V L-edge x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra of VO(acac) and V(acac) prototype complexes. The recorded V L-edge XAS and XMCD spectra are richly featured in both V L and L spectral regions. In an effort to predict and interpret the nature of the experimentally observed spectral features, a first-principles approach for the simultaneous prediction of XAS and XMCD spectra in the framework of wavefunction based ab initio methods is presented. The theory used here has previously been formulated for predicting optical absorption and MCD spectra. In the present context, it is applied to the prediction of the V L-edge XAS and XMCD spectra of the VO(acac) and V(acac) complexes. In this approach, the spin-free Hamiltonian is computed on the basis of the complete active space configuration interaction (CASCI) in conjunction with second order N-electron valence state perturbation theory (NEVPT2) as well as the density functional theory (DFT)/restricted open configuration interaction with singles configuration state functions based on a ground state Kohn-Sham determinant (ROCIS/DFT). Quasi-degenerate perturbation theory is then used to treat the spin-orbit coupling (SOC) operator variationally at the many particle level. The XAS and XMCD transitions are computed between the relativistic many particle states, considering their respective Boltzmann populations. These states are obtained from the diagonalization of the SOC operator along with the spin and orbital Zeeman operators. Upon averaging over all possible magnetic field orientations, the XAS and XMCD spectra of randomly oriented samples are obtained. This approach does not rely on the validity of low-order perturbation theory and provides simultaneous access to the calculation of XMCD A, B, and C terms. The ability of the method to predict the XMCD C-term signs and provide access to the XMCD intensity mechanism is demonstrated on the basis of a generalized state coupling mechanism based on the type of the excitations dominating the relativistically corrected states. In the second step, the performance of CASCI, CASCI/NEVPT2, and ROCIS/DFT is evaluated. The very good agreement between theory and experiment has allowed us to unravel the complicated XMCD C-term mechanism on the basis of the SOC interaction between the various multiplets with spin S' = S, S ± 1. In the last step, it is shown that the commonly used spin and orbital sum rules are inadequate in interpreting the intensity mechanism of the XAS and XMCD spectra of the VO(acac) and V(acac) complexes as they breakdown when they are employed to predict their magneto-optical properties. This conclusion is expected to hold more generally.
在这项工作中,我们对 VO(acac) 和 V(acac) 原型配合物的 V L 边缘 X 射线吸收 (XAS) 和 X 射线磁圆二色性 (XMCD) 光谱进行了组合的实验和理论研究。记录的 V L 边缘 XAS 和 XMCD 光谱在 V L 和 L 光谱区域都具有丰富的特征。为了预测和解释实验观察到的光谱特征的性质,我们提出了一种基于波函数的第一性原理方法来同时预测 XAS 和 XMCD 光谱的方法。这里使用的理论以前曾被用于预测光学吸收和 MCD 光谱。在当前的上下文中,它被应用于预测 VO(acac) 和 V(acac) 配合物的 V L 边缘 XAS 和 XMCD 光谱。在这种方法中,自旋自由哈密顿量是基于完全活性空间组态相互作用 (CASCI) 与二阶 N 电子价态微扰理论 (NEVPT2) 以及基于基态 Kohn-Sham 行列式的密度泛函理论 (DFT)/受限开壳组态相互作用与单组态态函数 (ROCIS/DFT) 来计算的。然后,准简并微扰理论用于在多粒子水平上变分处理自旋轨道耦合 (SOC) 算符。XAS 和 XMCD 跃迁是在相对论多粒子态之间计算的,考虑了它们各自的玻尔兹曼种群。这些状态是通过对角化 SOC 算子以及自旋和轨道塞曼算子获得的。在对所有可能的磁场方向进行平均后,得到随机取向样品的 XAS 和 XMCD 光谱。这种方法不依赖于低阶微扰理论的有效性,并提供了同时计算 XMCD A、B 和 C 项的方法。基于主导相对论校正态的激发类型的广义态耦合机制,证明了该方法预测 XMCD C 项符号并提供 XMCD 强度机制的能力。在第二步中,评估了 CASCI、CASCI/NEVPT2 和 ROCIS/DFT 的性能。理论与实验的非常好的一致性使我们能够基于 SOC 相互作用在各种多重态之间解开复杂的 XMCD C 项机制,自旋 S' = S、S ± 1。在最后一步,结果表明,当它们用于预测其磁光性质时,通常使用的自旋和轨道总和规则不足以解释 VO(acac) 和 V(acac) 配合物的 XAS 和 XMCD 光谱的强度机制,因为它们在这种情况下会失效。预计这一结论具有更普遍的意义。