Van Stappen Casey, Van Kuiken Benjamin E, Mörtel Max, Ruotsalainen Kari O, Maganas Dimitrios, Khusniyarov Marat M, DeBeer Serena
Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.
European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany.
Inorg Chem. 2024 Apr 22;63(16):7386-7400. doi: 10.1021/acs.inorgchem.4c00435. Epub 2024 Apr 8.
The molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [Fe(HB(pz))phen]. Light-induced excited spin-state trapping (LIESST) at liquid He temperatures is exploited to characterize magnetic and spectroscopic properties of the photoinduced HS state using SQUID magnetometry and magnetic circular dichroism spectroscopy. In parallel, Fe 2p3d RIXS spectroscopy is employed to examine the Δ = 0, 1 excited LF states. These experimental studies are combined with state-of-the-art CASSCF/NEVPT2 and CASCI/NEVPT2 calculations characterizing the ground and LF excited states. Analysis of the acquired LF information further supports the notion that the spin-crossover of [Fe(HB(pz))phen] is asymmetric, evidenced by a decrease in e in the LS state. The results demonstrate the power of cross-correlating spectroscopic techniques with high and low LF information content to make accurate excited-state assignments, as well as the current capabilities of ab initio theory in interpreting these electronic properties.
高自旋(HS)态和低自旋(LS)态之间的分子自旋交叉现象是通往下一代信息存储、传感应用和分子自旋电子学的一条有前景的途径。自旋交叉配合物还提供了一个独特的机会,在保持相同配体环境的同时,研究HS和LS态下系统的配体场(LF)性质。目前,我们采用互补的价态和芯能级光谱方法来探测自旋交叉配合物[Fe(HB(pz))phen]的电子激发态多重态。利用液氦温度下的光诱导激发自旋态捕获(LIESST),通过超导量子干涉仪磁强计和磁圆二色光谱来表征光诱导HS态的磁性和光谱性质。同时,采用Fe 2p3d共振非弹性X射线散射光谱来研究Δ = 0、1的激发LF态。这些实验研究与表征基态和LF激发态的先进的完全活性空间自洽场/二阶微扰非正交多参考态微扰理论(CASSCF/NEVPT2)以及完全活性空间组态相互作用/二阶微扰非正交多参考态微扰理论(CASCI/NEVPT2)计算相结合。对获得的LF信息的分析进一步支持了[Fe(HB(pz))phen]的自旋交叉是不对称的这一观点,这在LS态下e的降低中得到了证明。结果证明了将具有高和低LF信息含量的光谱技术相互关联以进行准确的激发态归属的能力,以及从头算理论目前在解释这些电子性质方面的能力。