Suppr超能文献

基于定量网络比较的共同共表达模块的鉴定。

Identification of common coexpression modules based on quantitative network comparison.

机构信息

Bio-Synergy Research Center, Daejeon, 34141, South Korea.

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.

出版信息

BMC Bioinformatics. 2018 Jun 13;19(Suppl 8):213. doi: 10.1186/s12859-018-2193-3.

Abstract

BACKGROUND

Finding common molecular interactions from different samples is essential work to understanding diseases and other biological processes. Coexpression networks and their modules directly reflect sample-specific interactions among genes. Therefore, identification of common coexpression network or modules may reveal the molecular mechanism of complex disease or the relationship between biological processes. However, there has been no quantitative network comparison method for coexpression networks and we examined previous methods for other networks that cannot be applied to coexpression network. Therefore, we aimed to propose quantitative comparison methods for coexpression networks and to find common biological mechanisms between Huntington's disease and brain aging by the new method.

RESULTS

We proposed two similarity measures for quantitative comparison of coexpression networks. Then, we performed experiments using known coexpression networks. We showed the validity of two measures and evaluated threshold values for similar coexpression network pairs from experiments. Using these similarity measures and thresholds, we quantitatively measured the similarity between disease-specific and aging-related coexpression modules and found similar Huntington's disease-aging coexpression module pairs.

CONCLUSIONS

We identified similar Huntington's disease-aging coexpression module pairs and found that these modules are related to brain development, cell death, and immune response. It suggests that up-regulated cell signalling related cell death and immune/ inflammation response may be the common molecular mechanisms in the pathophysiology of HD and normal brain aging in the frontal cortex.

摘要

背景

从不同样本中寻找共同的分子相互作用对于理解疾病和其他生物过程至关重要。共表达网络及其模块直接反映了基因之间特定于样本的相互作用。因此,识别共同的共表达网络或模块可能揭示复杂疾病的分子机制或生物过程之间的关系。然而,目前还没有用于共表达网络的定量网络比较方法,我们检查了其他网络的先前方法,但这些方法不能应用于共表达网络。因此,我们旨在提出用于共表达网络的定量比较方法,并通过新方法在亨廷顿病和大脑老化之间找到共同的生物学机制。

结果

我们提出了两种用于共表达网络定量比较的相似性度量方法。然后,我们使用已知的共表达网络进行了实验。我们展示了两种度量的有效性,并从实验中评估了相似共表达网络对的阈值。使用这些相似性度量和阈值,我们对疾病特异性和衰老相关的共表达模块之间的相似性进行了定量测量,并发现了相似的亨廷顿病-衰老共表达模块对。

结论

我们确定了相似的亨廷顿病-衰老共表达模块对,并发现这些模块与大脑发育、细胞死亡和免疫反应有关。这表明,上调的细胞信号相关的细胞死亡和免疫/炎症反应可能是亨廷顿病和正常大脑衰老的共同分子机制在额叶皮质中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5b0/5998758/7eca385c55b7/12859_2018_2193_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验