Suppr超能文献

微管聚合酶的设计原理。

Design principles of a microtubule polymerase.

机构信息

Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, United States.

Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.

出版信息

Elife. 2018 Jun 13;7:e34574. doi: 10.7554/eLife.34574.

Abstract

Stu2/XMAP215 microtubule polymerases use multiple tubulin-binding TOG domains and a lattice-binding basic region to processively promote faster elongation. How the domain composition and organization of these proteins dictate polymerase activity, end localization, and processivity is unknown. We show that polymerase activity does not require different kinds of TOGs, nor are there strict requirements for how the TOGs are linked. We identify an unexpected antagonism between the tubulin-binding TOGs and the lattice-binding basic region: lattice binding by the basic region is weak when at least two TOGs engage tubulins, strong when TOGs are empty. End-localization of Stu2 requires unpolymerized tubulin, at least two TOGs, and polymerase competence. We propose a 'ratcheting' model for processivity: transfer of tubulin from TOGs to the lattice activates the basic region, retaining the polymerase at the end for subsequent rounds of tubulin binding and incorporation. These results clarify design principles of the polymerase.

摘要

Stu2/XMAP215 微管聚合酶使用多个微管结合 TOG 结构域和晶格结合碱性区域来进行促进更快伸长的连续反应。这些蛋白质的结构域组成和组织如何决定聚合酶的活性、末端定位和连续性尚不清楚。我们表明,聚合酶活性不需要不同种类的 TOG,也没有对 TOG 如何连接的严格要求。我们发现微管结合 TOG 结构域和晶格结合碱性区域之间存在出乎意料的拮抗作用:当至少两个 TOG 结合微管时,碱性区域的晶格结合较弱,而当 TOG 为空时,晶格结合较强。Stu2 的末端定位需要未聚合的微管、至少两个 TOG 和聚合酶能力。我们提出了一个连续性的“棘轮”模型:从 TOG 到晶格的微管转移激活碱性区域,将聚合酶保留在末端,以便随后进行微管结合和掺入。这些结果阐明了聚合酶的设计原则。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验