Department of Anatomy, University of Rostock, Gertrudenstr. 9, 18057 Rostock, Germany.
Brief Bioinform. 2019 Sep 27;20(5):1944-1955. doi: 10.1093/bib/bby048.
Structural connectomics supports understanding aspects of neuronal dynamics and brain functions. Conducting metastudies of tract-tracing publications is one option to generate connectome databases by collating neuronal connectivity data. Meanwhile, it is a common practice that the neuronal connections and their attributes of such retrospective data collations are extracted from tract-tracing publications manually by experts. As the description of tract-tracing results is often not clear-cut and the documentation of interregional connections is not standardized, the extraction of connectivity data from tract-tracing publications could be complex. This might entail that different experts interpret such non-standardized descriptions of neuronal connections from the same publication in variable ways. Hitherto, no investigation is available that determines the variability of extracted connectivity information from original tract-tracing publications. A relatively large variability of connectivity information could produce significant misconstructions of adjacency matrices with faults in network and graph analyzes. The objective of this study is to investigate the inter-rater and inter-observation variability of tract-tracing-based documentations of neuronal connections. To demonstrate the variability of neuronal connections, data of 16 publications which describe neuronal connections of subregions of the hypothalamus have been assessed by way of example.
A workflow is proposed that allows detecting variability of connectivity at different steps of data processing in connectome metastudies. Variability between three blinded experts was found by comparing the connection information in a sample of 16 publications that describe tract-tracing-based neuronal connections in the hypothalamus. Furthermore, observation scores, matrix visualizations of discrepant connections and weight variations in adjacency matrices are analyzed.
The resulting data and software are available at http://neuroviisas.med.uni-rostock.de/neuroviisas.shtml.
结构连接组学支持理解神经元动力学和大脑功能的各个方面。通过整理神经元连接数据,对示踪出版物进行荟萃研究是生成连接组数据库的一种选择。同时,通常的做法是由专家手动从示踪出版物中提取神经元连接及其属性的回溯性数据整理。由于示踪结果的描述往往不明确,并且区域间连接的文档记录没有标准化,因此从示踪出版物中提取连接数据可能很复杂。这可能意味着不同的专家会以不同的方式从同一出版物中解释神经元连接的这种非标准化描述。迄今为止,尚无研究确定从原始示踪出版物中提取连接信息的可变性。连接信息的相对较大的可变性可能会导致网络和图形分析中的邻接矩阵出现重大错误。本研究的目的是调查基于示踪的神经元连接文档的评分者间和观测间的可变性。为了展示神经元连接的可变性,通过示例评估了 16 篇描述下丘脑亚区神经元连接的出版物的数据。
提出了一个工作流程,该流程允许在连接组荟萃研究的不同数据处理步骤中检测连接的可变性。通过比较描述下丘脑基于示踪的神经元连接的 16 篇出版物中的连接信息,发现了三位盲评专家之间的差异。此外,还分析了观察评分、差异连接的矩阵可视化和邻接矩阵中的权重变化。
http://neuroviisas.med.uni-rostock.de/neuroviisas.shtml 上提供了生成的数据和软件。