Suppr超能文献

模糊引导锐化掩模。

Blurriness-Guided Unsharp Masking.

出版信息

IEEE Trans Image Process. 2018 Sep;27(9):4465-4477. doi: 10.1109/TIP.2018.2838660.

Abstract

In this paper, a highly-adaptive unsharp masking (UM) method is proposed and called the blurriness-guided UM, or BUM, in short. The proposed BUM exploits the estimated local blurriness as the guidance information to perform pixel-wise enhancement. The consideration of local blurriness is motivated by the fact that enhancing a highly-sharp or a highly-blurred image region is undesirable, since this could easily yield unpleasant image artifacts due to over-enhancement or noise enhancement, respectively. Our proposed BUM algorithm has two powerful adaptations as follows. First, the enhancement strength is adjusted for each pixel on the input image according to the degree of local blurriness measured at the local region of this pixel's location. All such measurements collectively form the blurriness map, from which the scaling matrix can be obtained using our proposed mapping process. Second, we also consider the type of layer-decomposition filter exploited for generating the base layer and the detail layer, since this consideration would effectively help to prevent over-enhancement artifacts. In this paper, the layer-decomposition filter is considered from the viewpoint of edge-preserving type versus non-edge-preserving type. Extensive simulations experimented on various test images have clearly demonstrated that our proposed BUM is able to consistently yield superior enhanced images with better perceptual quality to that of using a fixed enhancement strength or other state-of-the-art adaptive UM methods.

摘要

本文提出了一种高度自适应的非锐化掩模(UM)方法,简称为模糊引导 UM(BUM)。所提出的 BUM 利用估计的局部模糊度作为指导信息,对像素进行增强。考虑局部模糊度的原因是,增强高度清晰或高度模糊的图像区域是不理想的,因为这可能容易由于过度增强或噪声增强而分别产生令人不快的图像伪影。我们提出的 BUM 算法具有两个强大的自适应功能,如下所示。首先,根据在该像素位置的局部区域测量的局部模糊度,调整输入图像上每个像素的增强强度。所有这些测量共同形成模糊度图,从中可以使用我们提出的映射过程获得缩放矩阵。其次,我们还考虑了用于生成基础层和细节层的层分解滤波器的类型,因为这种考虑将有效地帮助防止过度增强伪影。在本文中,从边缘保持型与非边缘保持型的角度考虑了层分解滤波器。在各种测试图像上进行的广泛仿真实验清楚地表明,与使用固定增强强度或其他最先进的自适应 UM 方法相比,我们提出的 BUM 能够始终如一地生成具有更好感知质量的优越增强图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验