Shaik Amir Nor Shahirah, Kang Law Zhe, Mukari Shahizon Azura, Sahathevan Ramesh, Chellappan Kalaivani
Department of Electric, Electronics and System, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
Department of Neurology and Radiology, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia.
Healthc Technol Lett. 2019 Dec 10;7(1):1-6. doi: 10.1049/htl.2018.5003. eCollection 2020 Feb.
A critical step in detection of primary intracerebral haemorrhage (ICH) is an accurate assessment of computed tomography (CT) brain images. The correct diagnosis relies on imaging modality and quality of acquired images. The authors present an enhancement algorithm which can improve the clarity of edges on CT images. About 40 samples of CT brain images with final diagnosis of primary ICH were obtained from the UKM Medical Centre in Digital Imaging and Communication in Medicine format. The images resized from 512 × 512 to 256 × 256 pixel resolution to reduce processing time. This Letter comprises of two main sections; the first is denoising using Wiener filter, non-local means and wavelet; the second section focuses on image enhancement using a modified unsharp masking (UM) algorithm to improve the visualisation of ICH. The combined approach of Wiener filter and modified UM algorithm outperforms other combinations with average values of mean square error, peak signal-to-noise ratio, variance and structural similarity index of 2.89, 31.72, 0.12 and 0.98, respectively. The reliability of proposed algorithm was evaluated by three blinded assessors which achieved a median score of 65%. This approach provides reliable validation for the proposed algorithm which has potential in improving image analysis.
原发性脑出血(ICH)检测中的关键一步是对脑部计算机断层扫描(CT)图像进行准确评估。正确的诊断依赖于成像方式和所获取图像的质量。作者提出了一种增强算法,该算法可提高CT图像边缘的清晰度。从马来西亚国民大学医学中心获取了约40份最终诊断为原发性ICH的脑部CT图像样本,格式为医学数字成像和通信格式。图像分辨率从512×512调整为256×256像素,以减少处理时间。这篇信函包含两个主要部分;第一部分是使用维纳滤波器、非局部均值和小波进行去噪;第二部分重点是使用改进的非锐化掩模(UM)算法进行图像增强,以改善ICH的可视化效果。维纳滤波器和改进的UM算法的组合方法优于其他组合,其均方误差、峰值信噪比、方差和结构相似性指数的平均值分别为2.89、31.72、0.12和0.98。由三名不知情的评估人员对所提出算法的可靠性进行评估,得到的中位数分数为65%。这种方法为所提出的算法提供了可靠的验证,该算法在改善图像分析方面具有潜力。