Suppr超能文献

一种在亚微米分辨率神经元成像中数字模拟自适应照明的快速去噪对比度增强方法。

A rapid denoised contrast enhancement method digitally mimicking an adaptive illumination in submicron-resolution neuronal imaging.

作者信息

Borah Bhaskar Jyoti, Sun Chi-Kuang

机构信息

Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.

Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan.

出版信息

iScience. 2022 Jan 15;25(2):103773. doi: 10.1016/j.isci.2022.103773. eCollection 2022 Feb 18.

Abstract

Optical neuronal imaging often shows ultrafine structures, such as a nerve fiber, coexisting with ultrabright structures, such as a soma with a substantially higher fluorescence-protein concentration. Owing to experimental and environmental factors, a laser-scanning multiphoton optical microscope (MPM) often encounters a high-frequency background noise that might contaminate such weak-intensity ultrafine neuronal structures. A straightforward contrast enhancement often leads to the saturation of the brighter ones, and might further amplify the high-frequency background noise. We report a digital approach called rapid denoised contrast enhancement (DCE), which digitally mimics a hardware-based adaptive/controlled illumination technique by means of digitally optimizing the signal strengths and hence the visibility of such weak-intensity structures while mostly preventing the saturation of the brightest ones. With large field-of-view (FOV) two-photon excitation fluorescence (TPEF) neuronal imaging, we validate the effectiveness of DCE over state-of-the-art digital image processing algorithms. With compute-unified-device-architecture (CUDA)-acceleration, a real-time DCE is further enabled with a reduced time complexity.

摘要

光学神经元成像常常显示出超精细结构,比如神经纤维,与超亮结构共存,比如荧光蛋白浓度显著更高的胞体。由于实验和环境因素,激光扫描多光子光学显微镜(MPM)经常会遇到高频背景噪声,这可能会污染这类低强度的超精细神经元结构。直接的对比度增强往往会导致较亮结构饱和,并可能进一步放大高频背景噪声。我们报告了一种名为快速去噪对比度增强(DCE)的数字方法,该方法通过数字方式优化信号强度,从而数字模拟基于硬件的自适应/可控照明技术,进而提高这类低强度结构的可见性,同时最大限度地防止最亮结构饱和。通过大视野(FOV)双光子激发荧光(TPEF)神经元成像,我们验证了DCE相对于现有数字图像处理算法的有效性。借助计算统一设备架构(CUDA)加速,还实现了具有降低时间复杂度的实时DCE。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验