Max-Planck-Institute of Neurobiology, Martinsried, Germany.
PLoS Comput Biol. 2018 Jun 13;14(6):e1006240. doi: 10.1371/journal.pcbi.1006240. eCollection 2018 Jun.
Seeing the direction of motion is essential for survival of all sighted animals. Consequently, nerve cells that respond to visual stimuli moving in one but not in the opposite direction, so-called 'direction-selective' neurons, are found abundantly. In general, direction selectivity can arise by either signal amplification for stimuli moving in the cell's preferred direction ('preferred direction enhancement'), signal suppression for stimuli moving along the opposite direction ('null direction suppression'), or a combination of both. While signal suppression can be readily implemented in biophysical terms by a hyperpolarization followed by a rectification corresponding to the nonlinear voltage-dependence of the Calcium channel, the biophysical mechanism for signal amplification has remained unclear so far. Taking inspiration from the fly, I analyze a neural circuit where a direction-selective ON-cell receives inhibitory input from an OFF cell on the preferred side of the dendrite, while excitatory ON-cells contact the dendrite centrally. This way, an ON edge moving along the cell's preferred direction suppresses the inhibitory input, leading to a release from inhibition in the postsynaptic cell. The benefit of such a two-fold signal inversion lies in the resulting increase of the postsynaptic cell's input resistance, amplifying its response to a subsequent excitatory input signal even with a passive dendrite, i.e. without voltage-gated ion channels. A motion detector implementing this mechanism together with null direction suppression shows a high degree of direction selectivity over a large range of temporal frequency, narrow directional tuning, and a large signal-to-noise ratio.
看到运动的方向对于所有有视力的动物的生存都是至关重要的。因此,大量存在着对朝一个方向而不是相反方向运动的视觉刺激做出反应的神经细胞,即所谓的“方向选择性”神经元。一般来说,方向选择性可以通过对朝细胞首选方向运动的刺激进行信号放大(“首选方向增强”)、对朝相反方向运动的刺激进行信号抑制(“零方向抑制”),或者两者的组合来实现。虽然信号抑制可以通过紧随其后的超极化来很容易地用生物物理术语来实现,这种超极化与钙通道的非线性电压依赖性相对应,从而产生整流作用,但是信号放大的生物物理机制到目前为止仍然不清楚。受果蝇的启发,我分析了一个神经回路,其中一个方向选择性的 ON 细胞从树突的优选侧的 OFF 细胞接收抑制性输入,而兴奋性的 ON 细胞在树突的中心接触树突。这样,沿着细胞首选方向移动的 ON 边缘会抑制抑制性输入,导致突触后细胞释放抑制。这种双重信号反转的好处在于,即使在没有电压门控离子通道的情况下,它也会增加突触后细胞的输入电阻,从而放大其对随后的兴奋性输入信号的反应。一个实现这种机制的运动探测器,再加上零方向抑制,在很大的时间频率范围内、较窄的方向调谐和较大的信噪比下,表现出高度的方向选择性。