Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
Curr Biol. 2022 Sep 12;32(17):3659-3675.e8. doi: 10.1016/j.cub.2022.06.075. Epub 2022 Jul 21.
Neurons integrate excitatory and inhibitory signals to produce their outputs, but the role of input timing in this integration remains poorly understood. Motion detection is a paradigmatic example of this integration, since theories of motion detection rely on different delays in visual signals. These delays allow circuits to compare scenes at different times to calculate the direction and speed of motion. Different motion detection circuits have different velocity sensitivity, but it remains untested how the response dynamics of individual cell types drive this tuning. Here, we sped up or slowed down specific neuron types in Drosophila's motion detection circuit by manipulating ion channel expression. Altering the dynamics of individual neuron types upstream of motion detectors increased their sensitivity to fast or slow visual motion, exposing distinct roles for excitatory and inhibitory dynamics in tuning directional signals, including a role for the amacrine cell CT1. A circuit model constrained by functional data and anatomy qualitatively reproduced the observed tuning changes. Overall, these results reveal how excitatory and inhibitory dynamics together tune a canonical circuit computation.
神经元整合兴奋性和抑制性信号以产生输出,但输入定时在这种整合中的作用仍知之甚少。运动检测就是这种整合的一个典型例子,因为运动检测理论依赖于视觉信号的不同延迟。这些延迟允许电路在不同的时间比较场景,以计算运动的方向和速度。不同的运动检测电路具有不同的速度敏感性,但仍有待测试单个细胞类型的反应动力学如何驱动这种调谐。在这里,我们通过操纵离子通道表达来加速或减缓果蝇运动检测电路中的特定神经元类型。改变运动探测器上游的单个神经元类型的动力学增加了它们对快速或慢速视觉运动的敏感性,揭示了兴奋性和抑制性动力学在调谐方向信号中的不同作用,包括无顶细胞 CT1 的作用。受功能数据和解剖结构约束的电路模型定性地再现了观察到的调谐变化。总的来说,这些结果揭示了兴奋性和抑制性动力学如何共同调谐一个典型的电路计算。