Suppr超能文献

基于加权蛋白质-蛋白质相互作用网络分析的帕金森病候选基因分层。

Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis.

机构信息

Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1B 5EH, UK.

School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK.

出版信息

BMC Genomics. 2018 Jun 13;19(1):452. doi: 10.1186/s12864-018-4804-9.

Abstract

BACKGROUND

Genome wide association studies (GWAS) have helped identify large numbers of genetic loci that significantly associate with increased risk of developing diseases. However, translating genetic knowledge into understanding of the molecular mechanisms underpinning disease (i.e. disease-specific impacted biological processes) has to date proved to be a major challenge. This is primarily due to difficulties in confidently defining candidate genes at GWAS-risk loci. The goal of this study was to better characterize candidate genes within GWAS loci using a protein interactome based approach and with Parkinson's disease (PD) data as a test case.

RESULTS

We applied a recently developed Weighted Protein-Protein Interaction Network Analysis (WPPINA) pipeline as a means to define impacted biological processes, risk pathways and therein key functional players. We used previously established Mendelian forms of PD to identify seed proteins, and to construct a protein network for genetic Parkinson's and carried out functional enrichment analyses. We isolated PD-specific processes indicating 'mitochondria stressors mediated cell death', 'immune response and signaling', and 'waste disposal' mediated through 'autophagy'. Merging the resulting protein network with data from Parkinson's GWAS we confirmed 10 candidate genes previously selected by pure proximity and were able to nominate 17 novel candidate genes for sporadic PD.

CONCLUSIONS

With this study, we were able to better characterize the underlying genetic and functional architecture of idiopathic PD, thus validating WPPINA as a robust pipeline for the in silico genetic and functional dissection of complex disorders.

摘要

背景

全基因组关联研究(GWAS)已帮助确定了许多与疾病风险增加显著相关的遗传基因座。然而,将遗传知识转化为对疾病潜在分子机制的理解(即疾病特异性影响的生物过程)迄今为止一直是一个重大挑战。这主要是由于在 GWAS 风险基因座中确定候选基因的困难。本研究的目的是使用基于蛋白质相互作用组的方法更好地描述 GWAS 基因座内的候选基因,并以帕金森病(PD)数据作为测试案例。

结果

我们应用了一种最近开发的加权蛋白质-蛋白质相互作用网络分析(WPPINA)管道,作为定义受影响的生物过程、风险途径以及其中关键功能参与者的方法。我们使用先前建立的孟德尔形式的 PD 来识别种子蛋白,并构建一个用于遗传帕金森病的蛋白质网络,并进行功能富集分析。我们分离出 PD 特异性过程,表明“线粒体应激介导的细胞死亡”、“免疫反应和信号转导”以及“通过自噬进行废物处理”。将所得蛋白质网络与帕金森病 GWAS 的数据融合,我们确认了先前通过纯接近性选择的 10 个候选基因,并能够提名 17 个新的候选基因用于散发性 PD。

结论

通过这项研究,我们能够更好地描述特发性 PD 的潜在遗传和功能结构,从而验证了 WPPINA 作为一种强大的管道,用于复杂疾病的计算机遗传和功能分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50f2/6000968/38cba3f7e316/12864_2018_4804_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验