Suppr超能文献

额颞叶痴呆的加权蛋白质相互作用网络分析

Weighted Protein Interaction Network Analysis of Frontotemporal Dementia.

作者信息

Ferrari Raffaele, Lovering Ruth C, Hardy John, Lewis Patrick A, Manzoni Claudia

机构信息

Department of Molecular Neuroscience, UCL Institute of Neurology , Russell Square House, 9-12 Russell Square House, London WC1B 5EH, United Kingdom.

Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London , London WC1E 6JF, United Kingdom.

出版信息

J Proteome Res. 2017 Feb 3;16(2):999-1013. doi: 10.1021/acs.jproteome.6b00934. Epub 2017 Jan 12.

Abstract

The genetic analysis of complex disorders has undoubtedly led to the identification of a wealth of associations between genes and specific traits. However, moving from genetics to biochemistry one gene at a time has, to date, rather proved inefficient and under-powered to comprehensively explain the molecular basis of phenotypes. Here we present a novel approach, weighted protein-protein interaction network analysis (W-PPI-NA), to highlight key functional players within relevant biological processes associated with a given trait. This is exemplified in the current study by applying W-PPI-NA to frontotemporal dementia (FTD): We first built the state of the art FTD protein network (FTD-PN) and then analyzed both its topological and functional features. The FTD-PN resulted from the sum of the individual interactomes built around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty nine of 4198 nodes, called inter-interactome hubs (IIHs), represented those interactors able to bridge over 60% of the individual interactomes. Functional annotation analysis not only reiterated and reinforced previous findings from single genes and gene-coexpression analyses but also indicated a number of novel potential disease related mechanisms, including DNA damage response, gene expression regulation, and cell waste disposal and potential biomarkers or therapeutic targets including EP300. These processes and targets likely represent the functional core impacted in FTD, reflecting the underlying genetic architecture contributing to disease. The approach presented in this study can be applied to other complex traits for which risk-causative genes are known as it provides a promising tool for setting the foundations for collating genomics and wet laboratory data in a bidirectional manner. This is and will be critical to accelerate molecular target prioritization and drug discovery.

摘要

复杂疾病的基因分析无疑已促成了大量基因与特定性状之间关联的识别。然而,迄今为止,一次研究一个基因,从遗传学过渡到生物化学,已被证明在全面解释表型的分子基础方面效率低下且能力不足。在此,我们提出一种新方法,即加权蛋白质 - 蛋白质相互作用网络分析(W - PPI - NA),以突出与给定性状相关的相关生物学过程中的关键功能参与者。在当前研究中,通过将W - PPI - NA应用于额颞叶痴呆(FTD)来举例说明这一点:我们首先构建了最先进的FTD蛋白质网络(FTD - PN),然后分析其拓扑和功能特征。FTD - PN是围绕FTD谱系基因构建的各个相互作用组的总和,共产生4198个节点。4198个节点中的29个,称为相互作用组间枢纽(IIH),代表那些能够连接超过60%的各个相互作用组的相互作用子。功能注释分析不仅重申并强化了先前单个基因和基因共表达分析的结果,还指出了一些新的潜在疾病相关机制,包括DNA损伤反应、基因表达调控以及细胞废物处理,以及潜在的生物标志物或治疗靶点,包括EP300。这些过程和靶点可能代表了FTD中受影响的功能核心,反映了导致疾病的潜在遗传结构。本研究中提出的方法可应用于其他已知风险致病基因 的复杂性状,因为它为以双向方式整理基因组学和湿实验室数据奠定基础提供了一个有前景的工具。这对于加速分子靶点优先级排序和药物发现至关重要,而且将一直如此。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/691b/6152613/0b935d5c977c/pr-2016-00934r_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验