Suppr超能文献

载脂蛋白聚糖结合蛋白 1 中含硫酸酪氨酸的酸性结构域紊乱会调控脂蛋白脂肪酶。

A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase.

机构信息

Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.

Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark.

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E6020-E6029. doi: 10.1073/pnas.1806774115. Epub 2018 Jun 13.

Abstract

The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL's catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1's IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1-LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1-LPL encounter via electrostatic steering, increasing the association rate constant () for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1's IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1's ability to preserve LPL structure and activity.

摘要

富含甘油三酯的脂蛋白的血管内处理依赖于脂蛋白脂肪酶(LPL)和内皮细胞的膜蛋白 GPIHBP1,它将 LPL 结合在内皮细胞下腔并将其转运到毛细血管腔。在没有 GPIHBP1 的情况下,LPL 仍然在血管内皮下腔中定位不当,导致严重的高甘油三酯血症(乳糜微粒血症)。GPIHBP1 的 N 端结构域富含酸性残基,是一个固有无序区(IDR),对于稳定 LPL 的催化结构域对抗自发和 ANGPTL4 催化的展开非常重要。在这里,我们定义了 GPIHBP1 的 IDR 的几个重要特性。首先,IDR 中间的一个保守的酪氨酸残基被 O-硫酸化修饰;这种修饰增加了 GPIHBP1-LPL 相互作用的亲和力和 GPIHBP1 保护 LPL 免受 ANGPTL4 催化展开的能力。其次,GPIHBP1 的酸性 IDR 通过静电导向增加了 GPIHBP1-LPL 相遇的可能性,使 LPL 结合的结合速率常数()增加了 >250 倍。第三,我们表明,即使没有 GPIHBP1,LPL 也会在毛细血管内皮细胞附近积聚。在野生型小鼠中,我们预计 LPL 在与毛细血管紧密接近的地方的积累会增加与 GPIHBP1 的相互作用。第四,我们发现 GPIHBP1 的 IDR 不是 GPIHBP1 自身免疫综合征患者乳糜微粒血症发病机制的关键因素。最后,基于生物物理研究,我们提出 GPIHBP1 的带负电荷的 IDR 穿过一个巨大的空间,促进了毛细血管内皮细胞对 LPL 的捕获,同时也有助于 GPIHBP1 保持 LPL 结构和活性的能力。

相似文献

1
A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E6020-E6029. doi: 10.1073/pnas.1806774115. Epub 2018 Jun 13.
2
A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism.
Proc Natl Acad Sci U S A. 2022 Sep 6;119(36):e2211136119. doi: 10.1073/pnas.2211136119. Epub 2022 Aug 29.
3
Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis.
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1723-1732. doi: 10.1073/pnas.1817984116. Epub 2018 Dec 17.
5
GPIHBP1 missense mutations often cause multimerization of GPIHBP1 and thereby prevent lipoprotein lipase binding.
Circ Res. 2015 Feb 13;116(4):624-32. doi: 10.1161/CIRCRESAHA.116.305085. Epub 2014 Nov 11.
9
GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism.
Cell Metab. 2019 Jul 2;30(1):51-65. doi: 10.1016/j.cmet.2019.05.023.

引用本文的文献

1
ANGPTL3/8 is an atypical unfoldase that regulates intravascular lipolysis by catalyzing unfolding of lipoprotein lipase.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2420721122. doi: 10.1073/pnas.2420721122. Epub 2025 Mar 20.
2
Competitive displacement of lipoprotein lipase from heparan sulfate is orchestrated by a disordered acidic cluster in GPIHBP1.
J Lipid Res. 2025 Feb;66(2):100745. doi: 10.1016/j.jlr.2025.100745. Epub 2025 Jan 13.
4
Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease.
J Pharm Pharm Sci. 2024 Jul 16;27:13199. doi: 10.3389/jpps.2024.13199. eCollection 2024.
5
Understanding Hypertriglyceridemia: Integrating Genetic Insights.
Genes (Basel). 2024 Jan 30;15(2):190. doi: 10.3390/genes15020190.
6
Sulfoproteomics Workflow with Precursor Ion Accurate Mass Shift Analysis Reveals Novel Tyrosine Sulfoproteins in the Golgi.
J Proteome Res. 2024 Jan 5;23(1):71-83. doi: 10.1021/acs.jproteome.3c00323. Epub 2023 Dec 19.
7
The lipoprotein lipase that is shuttled into capillaries by GPIHBP1 enters the glycocalyx where it mediates lipoprotein processing.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2313825120. doi: 10.1073/pnas.2313825120. Epub 2023 Oct 23.
8
Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes.
J Diabetes Investig. 2023 Oct;14(10):1148-1156. doi: 10.1111/jdi.14056. Epub 2023 Jul 13.
10
Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2221888120. doi: 10.1073/pnas.2221888120. Epub 2023 Apr 24.

本文引用的文献

1
NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes.
Cell Metab. 2018 May 1;27(5):1055-1066.e3. doi: 10.1016/j.cmet.2018.03.017.
2
Extreme disorder in an ultrahigh-affinity protein complex.
Nature. 2018 Mar 1;555(7694):61-66. doi: 10.1038/nature25762. Epub 2018 Feb 21.
3
GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia.
J Clin Lipidol. 2017 Jul-Aug;11(4):964-971. doi: 10.1016/j.jacl.2017.05.017. Epub 2017 Jun 13.
4
Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding.
J Lipid Res. 2017 Jul;58(7):1453-1461. doi: 10.1194/jlr.M076943. Epub 2017 May 5.
5
Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia.
N Engl J Med. 2017 Apr 27;376(17):1647-1658. doi: 10.1056/NEJMoa1611930. Epub 2017 Apr 5.
6
Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity.
Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2644-E2653. doi: 10.1073/pnas.1700082114. Epub 2017 Mar 13.
7
A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors.
Nat Genet. 2017 Feb;49(2):193-203. doi: 10.1038/ng.3741. Epub 2016 Dec 19.
10
Monoclonal antibodies that bind to the Ly6 domain of GPIHBP1 abolish the binding of LPL.
J Lipid Res. 2017 Jan;58(1):208-215. doi: 10.1194/jlr.M072462. Epub 2016 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验