Suppr超能文献

载脂蛋白脂肪酶水解酶结构域的固有不稳定性使其易于通过 ANGPTL4 催化的展开而失活。

The intrinsic instability of the hydrolase domain of lipoprotein lipase facilitates its inactivation by ANGPTL4-catalyzed unfolding.

机构信息

Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark.

Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen N, Denmark.

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2026650118.

Abstract

The complex between lipoprotein lipase (LPL) and its endothelial receptor (GPIHBP1) is responsible for the lipolytic processing of triglyceride-rich lipoproteins (TRLs) along the capillary lumen, a physiologic process that releases lipid nutrients for vital organs such as heart and skeletal muscle. LPL activity is regulated in a tissue-specific manner by endogenous inhibitors (angiopoietin-like [ANGPTL] proteins 3, 4, and 8), but the molecular mechanisms are incompletely understood. ANGPTL4 catalyzes the inactivation of LPL monomers by triggering the irreversible unfolding of LPL's α/β-hydrolase domain. Here, we show that this unfolding is initiated by the binding of ANGPTL4 to sequences near LPL's catalytic site, including β2, β3-α3, and the lid. Using pulse-labeling hydrogen‒deuterium exchange mass spectrometry, we found that ANGPTL4 binding initiates conformational changes that are nucleated on β3-α3 and progress to β5 and β4-α4, ultimately leading to the irreversible unfolding of regions that form LPL's catalytic pocket. LPL unfolding is context dependent and varies with the thermal stability of LPL's α/β-hydrolase domain ( of 34.8 °C). GPIHBP1 binding dramatically increases LPL stability ( of 57.6 °C), while ANGPTL4 lowers the onset of LPL unfolding by ∼20 °C, both for LPL and LPL•GPIHBP1 complexes. These observations explain why the binding of GPIHBP1 to LPL retards the kinetics of ANGPTL4-mediated LPL inactivation at 37 °C but does not fully suppress inactivation. The allosteric mechanism by which ANGPTL4 catalyzes the irreversible unfolding and inactivation of LPL is an unprecedented pathway for regulating intravascular lipid metabolism.

摘要

脂蛋白脂肪酶 (LPL) 与其内皮受体 (GPIHBP1) 复合物负责沿着毛细血管腔对富含甘油三酯的脂蛋白 (TRLs) 进行脂解加工,这是一种释放脂质营养物质供心脏和骨骼肌等重要器官使用的生理过程。LPL 活性受内源性抑制剂(血管生成素样 [ANGPTL] 蛋白 3、4 和 8)以组织特异性方式调节,但分子机制尚不完全清楚。ANGPTL4 通过触发 LPL 的 α/β-水解酶结构域的不可逆展开来催化 LPL 单体的失活。在这里,我们表明这种展开是由 ANGPTL4 与 LPL 催化位点附近的序列结合引发的,包括 β2、β3-α3 和盖子。使用脉冲标记氢-氘交换质谱,我们发现 ANGPTL4 结合引发构象变化,这些变化在 β3-α3 上起始,并扩展到 β5 和 β4-α4,最终导致形成 LPL 催化口袋的区域的不可逆展开。LPL 展开是上下文相关的,并且随 LPL 的 α/β-水解酶结构域的热稳定性(34.8°C)而变化。GPIHBP1 结合极大地增加了 LPL 的稳定性(57.6°C),而 ANGPTL4 将 LPL 展开的起始降低了约 20°C,对于 LPL 和 LPL•GPIHBP1 复合物都是如此。这些观察结果解释了为什么 GPIHBP1 与 LPL 的结合会延迟 37°C 时 ANGPTL4 介导的 LPL 失活的动力学,但不能完全抑制失活。ANGPTL4 催化 LPL 不可逆展开和失活的变构机制是调节血管内脂质代谢的前所未有的途径。

相似文献

引用本文的文献

本文引用的文献

3
Analysis of Temperature-Dependent H/D Exchange Mass Spectrometry Experiments.温度依赖氘/氢交换质谱实验分析。
Anal Chem. 2020 Jul 21;92(14):10058-10067. doi: 10.1021/acs.analchem.0c01828. Epub 2020 Jul 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验