Department of Computer Science, University of Alabama at Birmingham, 115A Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294, USA.
Department of Biology, University of Alabama at Birmingham, 464 Campbell Hall, 1300 University Boulevard, Birmingham, AL, 35294, USA.
Nat Commun. 2018 Jun 13;9(1):2312. doi: 10.1038/s41467-018-04632-8.
In all organisms, major biological processes are controlled by complex protein-protein interactions networks (interactomes), yet their structural complexity presents major analytical challenges. Here, we integrate a compendium of over 4300 phenotypes with Arabidopsis interactome (AI-1). We show that nodes with high connectivity and betweenness are enriched and depleted in conditional and essential phenotypes, respectively. Such nodes are located in the innermost layers of AI-1 and are preferential targets of pathogen effectors. We extend these network-centric analyses to Cell Surface Interactome (CSI) and predict its 35 most influential nodes. To determine their biological relevance, we show that these proteins physically interact with pathogen effectors and modulate plant immunity. Overall, our findings contrast with centrality-lethality rule, discover fast information spreading nodes, and highlight the structural properties of pathogen targets in two different interactomes. Finally, this theoretical framework could possibly be applicable to other inter-species interactomes to reveal pathogen contact points.
在所有生物体中,主要的生物过程都受到复杂的蛋白质-蛋白质相互作用网络(相互作用组)的控制,但它们的结构复杂性带来了主要的分析挑战。在这里,我们整合了超过 4300 种表型与拟南芥相互作用组(AI-1)。我们表明,具有高连接度和中间度的节点在条件性和必需性表型中分别丰富和耗尽。这些节点位于 AI-1 的最内层,并且是病原体效应物的优先靶标。我们将这些网络中心分析扩展到细胞表面相互作用组(CSI),并预测其 35 个最具影响力的节点。为了确定它们的生物学相关性,我们表明这些蛋白质与病原体效应物相互作用并调节植物免疫。总的来说,我们的发现与中心性致死性规则相反,发现了快速信息传播节点,并突出了两个不同相互作用组中病原体靶标的结构特性。最后,这个理论框架可能适用于其他种间相互作用组,以揭示病原体的接触点。