Suppr超能文献

一个水稻蛋白质相互作用网络揭示了高中心性节点和候选病原体效应子靶标。

A rice protein interaction network reveals high centrality nodes and candidate pathogen effector targets.

作者信息

Mishra Bharat, Kumar Nilesh, Shahid Mukhtar M

机构信息

Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.

Nutrition Obesity Research Center, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.

出版信息

Comput Struct Biotechnol J. 2022 Apr 21;20:2001-2012. doi: 10.1016/j.csbj.2022.04.027. eCollection 2022.

Abstract

Network science identifies key players in diverse biological systems including host-pathogen interactions. We demonstrated a scale-free network property for a comprehensive rice protein-protein interactome (RicePPInets) that exhibits nodes with increased centrality indices. While weighted -shell decomposition was shown efficacious to predict pathogen effector targets in Arabidopsis, we improved its computational code for a broader implementation on large-scale networks including RicePPInets. We determined that nodes residing within the internal layers of RicePPInets are poised to be the most influential, central, and effective information spreaders. To identify central players and modules through network topology analyses, we integrated RicePPInets and co-expression networks representing susceptible and resistant responses to strains of the bacterial pathogens pv. and pv. () and generated a RIce- INteractome (RIXIN). This revealed that previously identified candidate targets of pathogen transcription activator-like (TAL) effectors are enriched in nodes with enhanced connectivity, bottlenecks, and information spreaders that are located in the inner layers of the network, and these nodes are involved in several important biological processes. Overall, our integrative multi-omics network-based platform provides a potentially useful approach to prioritizing candidate pathogen effector targets for functional validation, suggesting that this computational framework can be broadly translatable to other complex pathosystems.

摘要

网络科学确定了包括宿主-病原体相互作用在内的多种生物系统中的关键参与者。我们证明了一个全面的水稻蛋白质-蛋白质相互作用组(RicePPInets)具有无标度网络特性,该网络呈现出中心性指数增加的节点。虽然加权壳分解被证明可有效预测拟南芥中的病原体效应子靶标,但我们改进了其计算代码,以便在包括RicePPInets在内的大规模网络上更广泛地应用。我们确定,位于RicePPInets内层的节点有望成为最具影响力、最核心且最有效的信息传播者。为了通过网络拓扑分析识别核心参与者和模块,我们整合了RicePPInets和代表对细菌病原体pv. 和pv. ()菌株的易感和抗性反应的共表达网络,并生成了水稻相互作用组(RIXIN)。这表明,先前确定的病原体转录激活样(TAL)效应子的候选靶标在网络内层具有增强连通性、瓶颈和信息传播者的节点中富集,并且这些节点参与了几个重要的生物学过程。总体而言,我们基于多组学网络的综合平台为优先选择候选病原体效应子靶标进行功能验证提供了一种潜在有用的方法,这表明这种计算框架可以广泛应用于其他复杂的病理系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3bf/9062363/4dd79bc15e62/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验