Suppr超能文献

通过拟肽工程控制合成高度支化的等离子体金纳米粒子。

Controlled synthesis of highly-branched plasmonic gold nanoparticles through peptoid engineering.

机构信息

Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.

College of Chemistry & Chemical Engineering, Linyi University, Linyi, Shandong, 276005, China.

出版信息

Nat Commun. 2018 Jun 13;9(1):2327. doi: 10.1038/s41467-018-04789-2.

Abstract

In nature, specific biomolecules interacting with mineral precursors are responsible for the precise production of nanostructured inorganic materials that exhibit complex morphologies and superior performance. Despite advances in developing biomimetic approaches, the design rules for creating sequence-defined molecules that lead to the synthesis of inorganic nanomaterials with predictable complex morphologies are unknown. Herein we report the design of sequence-defined peptoids for controlled synthesis of highly branched plasmonic gold particles. By engineering peptoid sequences and investigating the resulting particle formation mechanisms, we develop a rule of thumb for designing peptoids that predictively enabled the morphological evolution from spherical to coral-shaped nanoparticles. Through a combination of hyperspectral UV-Vis extinction microscopy and three-photon photoemission electron microscopy, we demonstrate that the individual coral-shaped gold nanoparticles exhibit a plasmonic enhancement as high as 10-fold. This research significantly advances our ultimate vision of predictive bio-inspired materials synthesis using sequence-defined synthetic molecules that mimic proteins and peptides.

摘要

在自然界中,与矿物前体相互作用的特定生物分子负责精确生产具有复杂形态和优异性能的纳米结构无机材料。尽管在开发仿生方法方面取得了进展,但创建导致具有可预测复杂形态的无机纳米材料合成的序列定义分子的设计规则仍然未知。本文报道了用于控制合成高度支化等离子体金颗粒的序列定义肽的设计。通过工程肽序列并研究所得的颗粒形成机制,我们开发了一种设计肽的经验法则,可对从球形到珊瑚形纳米颗粒的形态演变进行预测。通过超光谱紫外-可见消光显微镜和三光子光发射电子显微镜的结合,我们证明了单个珊瑚形金纳米颗粒表现出高达 10 倍的等离子体增强。这项研究极大地推进了我们使用序列定义的合成分子模拟蛋白质和肽来进行可预测的仿生材料合成的最终愿景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d4/5998043/37658a4d3166/41467_2018_4789_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验