Suppr超能文献

为 CO 还原反应建模气体扩散电极。

Modeling gas-diffusion electrodes for CO reduction.

机构信息

Joint Center for Artificial Photosynthesis, LBNL, Berkeley, CA 94720, USA.

出版信息

Phys Chem Chem Phys. 2018 Jun 27;20(25):16973-16984. doi: 10.1039/c8cp01319e.

Abstract

CO2 reduction conducted in electrochemical cells with planar electrodes immersed in an aqueous electrolyte is severely limited by mass transport across the hydrodynamic boundary layer. This limitation can be minimized by use of vapor-fed, gas-diffusion electrodes (GDEs), enabling current densities that are almost two orders of magnitude greater at the same applied cathode overpotential than what is achievable with planar electrodes in an aqueous electrolyte. The addition of porous cathode layers, however, introduces a number of parameters that need to be tuned in order to optimize the performance of the GDE cell. In this work, we develop a multiphysics model for gas diffusion electrodes for CO2 reduction and used it to investigate the interplay between species transport and electrochemical reaction kinetics. The model demonstrates how the local environment near the catalyst layer, which is a function of the operating conditions, affects cell performance. We also examine the effects of catalyst layer hydrophobicity, loading, porosity, and electrolyte flowrate to help guide experimental design of vapor-fed CO2 reduction cells.

摘要

在浸入水性电解质的平面电极电化学电池中进行的 CO2 还原受到通过流体动力边界层的质量传输的严重限制。通过使用蒸汽进料、气体扩散电极(GDE)可以最小化这种限制,在相同的施加阴极过电势下,GDE 可以实现比在水性电解质中的平面电极高近两个数量级的电流密度。然而,添加多孔阴极层会引入许多需要调整的参数,以便优化 GDE 电池的性能。在这项工作中,我们开发了用于 CO2 还原的气体扩散电极的多物理模型,并使用该模型研究了物种传输和电化学反应动力学之间的相互作用。该模型展示了催化剂层附近的局部环境(这是操作条件的函数)如何影响电池性能。我们还研究了催化剂层疏水性、负载量、孔隙率和电解质流速的影响,以帮助指导蒸汽进料 CO2 还原电池的实验设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验