Agarwal Venu Gopal, Haussener Sophia
Laboratory of Renewable Energy Science and Engineering, EPFL, Station 9, Lausanne, 1015, Switzerland.
Commun Chem. 2024 Mar 5;7(1):47. doi: 10.1038/s42004-024-01122-5.
A gas diffusion electrode (GDE) based CO electrolyzer shows enhanced CO transport to the catalyst surface, significantly increasing current density compared to traditional planar immersed electrodes. A two-dimensional model for the cathode side of a microfluidic CO to CO electrolysis device with a GDE is developed. The model, validated against experimental data, examines key operational parameters and electrode materials. It predicts an initial rise in CO partial current density (PCD), peaking at 75 mA cm at -1.3 V vs RHE for a fully flooded catalyst layer, then declining due to continuous decrease in CO availability near the catalyst surface. Factors like electrolyte flow rate and CO gas mass flow rate influence PCD, with a trade-off between high CO PCD and CO conversion efficiency observed with increased CO gas flow. We observe that a significant portion of the catalyst layer remains underutilized, and suggest improvements like varying electrode porosity and anisotropic layers to enhance mass transport and CO PCD. This research offers insights into optimizing CO electrolysis device performance.
基于气体扩散电极(GDE)的CO电解槽显示出增强的CO传输到催化剂表面的能力,与传统的平面浸入式电极相比,显著提高了电流密度。开发了一种用于具有GDE的微流体CO电解装置阴极侧的二维模型。该模型通过实验数据进行了验证,研究了关键操作参数和电极材料。它预测了CO分电流密度(PCD)的初始上升,对于完全淹没的催化剂层,在相对于可逆氢电极(RHE)为-1.3 V时,PCD在75 mA cm²处达到峰值,然后由于催化剂表面附近CO可用性的持续降低而下降。电解质流速和CO气体质量流速等因素会影响PCD,随着CO气体流量的增加,在高CO PCD和CO转化效率之间存在权衡。我们观察到催化剂层的很大一部分未得到充分利用,并建议通过改变电极孔隙率和各向异性层等改进措施来增强传质和CO PCD。这项研究为优化CO电解装置性能提供了见解。