Suppr超能文献

FeO@C杂化纳米颗粒的水热合成及其对水溶液中重金属离子的磁性吸附性能

A Hydrothermal Synthesis of FeO@C Hybrid Nanoparticle and Magnetic Adsorptive Performance to Remove Heavy Metal Ions in Aqueous Solution.

作者信息

Ji Siping, Miao Changlin, Liu Hui, Feng Lili, Yang Xiangjun, Guo Hong

机构信息

School of Chemistry Science and Engineering, Yunnan University, No. 2, CuiHu North Road, Kunming, 650091, China.

Joint Research Centre for International Cross-border Ethnic Regions Biomass Clean Utilization in Yunnan, Yunnan University of Nationalities, Kunming, 650500, China.

出版信息

Nanoscale Res Lett. 2018 Jun 13;13(1):178. doi: 10.1186/s11671-018-2580-8.

Abstract

Advanced core-shelled material with a high specific area has been considered as an effective material to remove heavy metal from aqueous solutions. A core-shelled FeO@C hybrid nanoparticle aggregates with environmental-friendly channel in the study. Moreover, the higher exposure of adsorption sites can be achieved for the special configuration that higher Brunauer-Emmet-Teller (BET) surface area reaches up to 238.18 m g. Thus, a more efficiently heavy metal ion removal is obtained, Pb (II), Cd (II), Cu (II), and Cr (VI) up to 100, 99.2, 96.6, and 94.8%, respectively. In addition, the products are easy to be separated from the aqueous solutions after adsorption, due to the relative large submicrometer size and the enhanced external magnetic fields introduced by the iron-based cores. We provide an ideal mode to remove heavy metal ions using core-shelled FeO@C under the water treatment condition. A new approach is clarified that core-shell nano/micro-functional materials can be synthesized well on large scales which are used in many fields such as environmental remediation, catalyst, and energy.

摘要

具有高比表面积的先进核壳材料被认为是从水溶液中去除重金属的有效材料。本研究中一种具有环境友好通道的核壳型FeO@C杂化纳米颗粒聚集体。此外,由于特殊的结构,更高的布鲁诺尔-埃米特-泰勒(BET)表面积达到238.18 m²/g,可实现更高的吸附位点暴露。因此,能更高效地去除重金属离子,对Pb(II)、Cd(II)、Cu(II)和Cr(VI)的去除率分别高达100%、99.2%、96.6%和94.8%。此外,由于相对较大的亚微米尺寸以及铁基核引入的增强外磁场,吸附后产物易于从水溶液中分离。我们提供了一种在水处理条件下使用核壳型FeO@C去除重金属离子的理想模式。阐明了一种新方法,即核壳纳米/微功能材料可以大规模良好合成,并应用于环境修复、催化剂和能源等许多领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09a3/5999597/1de590a5bc75/11671_2018_2580_Sch1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验