Laboratoire d'hépatologie cellulaire, Centre de recherche du Centre hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
Neuroscience Research Unit, Hôpital Saint-Luc, Université de Montréal, Québec, Canada.
PLoS One. 2018 Jun 14;13(6):e0199177. doi: 10.1371/journal.pone.0199177. eCollection 2018.
The liver is a highly vascularized organ receiving a dual input of oxygenated blood from the hepatic artery and portal vein. The impact of decreased blood flow on glucose metabolism and how hepatocytes could adapt to this restrictive environment are still unclear. Using the left portal vein ligation (LPVL) rat model, we found that cellular injury was delayed after the onset of liver ischemia. We hypothesized that a metabolic adaptation by hepatocytes to maintain energy homeostasis could account for this lag phase. Liver glucose metabolism was characterized by 13C- and 1H-NMR spectroscopy and analysis of high-energy metabolites. ALT levels and caspase 3 activity in LPVL animals remained normal during the first 12 h following surgery (P<0.05). Ischemia rapidly led to decreased intrahepatic tissue oxygen tension and blood flow (P<0.05) and increased expression of Hypoxia-inducible factor 1-alpha. Intrahepatic glucose uptake, ATP/ADP ratio and energy charge level remained stable for up to 12 h after ligation. Entry of glucose in the Krebs cycle was impaired with lowered incorporation of 13C from [U-13C]glucose into glutamate and succinate from 0.25 to 12 h after LPVL. However, total hepatic succinate and glutamate increased 6 and 12 h after ischemia (P<0.05). Glycolysis was initially reduced (P<0.05) but reached maximum 13C-lactate (P<0.001) and 13C-alanine (P<0.01) enrichments 12 h after LPVL. In conclusion, early liver homeostasis stems from an inherent ability of ischemic hepatocytes to metabolically adapt through increased Krebs cycle and glycolysis activity to preserve bioenergetics and cell viability. This metabolic plasticity of hepatocytes could be harnessed to develop novel metabolic strategies to prevent ischemic liver damage.
肝脏是一个高度血管化的器官,接收来自肝动脉和门静脉的含氧血液的双重输入。血流减少对葡萄糖代谢的影响以及肝细胞如何适应这种限制环境仍不清楚。使用左门静脉结扎(LPVL)大鼠模型,我们发现肝缺血后细胞损伤延迟。我们假设肝细胞通过代谢适应来维持能量稳态可以解释这种滞后阶段。通过 13C-和 1H-NMR 光谱和高能代谢物分析来描述肝脏葡萄糖代谢。在手术后的前 12 小时内,LPVL 动物的 ALT 水平和 caspase 3 活性保持正常(P<0.05)。缺血迅速导致肝内组织氧张力和血流量降低(P<0.05),并增加缺氧诱导因子 1-α的表达。结扎后 12 小时内,肝内葡萄糖摄取、ATP/ADP 比和能量电荷水平保持稳定。进入三羧酸循环的葡萄糖受到损害,从 [U-13C]葡萄糖掺入谷氨酸和琥珀酸的 13C 掺入从结扎后 0.25 到 12 小时降低(P<0.05)。然而,总肝琥珀酸和谷氨酸在缺血后 6 和 12 小时增加(P<0.05)。糖酵解最初减少(P<0.05),但在 LPVL 后 12 小时达到最大 13C-乳酸(P<0.001)和 13C-丙氨酸(P<0.01)丰度。总之,早期肝脏内稳态源于缺血肝细胞通过增加三羧酸循环和糖酵解活性进行代谢适应的固有能力,以维持生物能量和细胞活力。肝细胞的这种代谢可塑性可以被利用来开发新的代谢策略来预防缺血性肝损伤。