Suppr超能文献

在原代海马培养物中沉默 α-SMN 和 FL-SMN 后,轴突生长和神经元分化缺陷。

Axon outgrowth and neuronal differentiation defects after a-SMN and FL-SMN silencing in primary hippocampal cultures.

机构信息

Molecular Neuroanatomy and Pathogenesis Unit, Neurology VII-Clinical and Experimental Epileptology Unit, Foundation IRCCS Neurological Institute "C. Besta", Milano, Italy.

出版信息

PLoS One. 2018 Jun 14;13(6):e0199105. doi: 10.1371/journal.pone.0199105. eCollection 2018.

Abstract

Spinal Muscular Atrophy (SMA) is a severe autosomal recessive disease characterized by selective motor neuron degeneration, caused by disruptions of the Survival of Motor Neuron 1 (Smn1) gene. The main product of SMN1 is the full-length SMN protein (FL-SMN), that plays an established role in mRNA splicing. FL-SMN is also involved in neurite outgrowth and axonal transport. A shorter SMN isoform, axonal-SMN or a-SMN, displays a more specific axonal localization and has remarkable axonogenic properties in NSC-34. Introduction of known SMA mutations into the a-SMN transcript leads to impairment of axon growth and morphological defects similar to those observed in SMA patients and animal models. Although there is increasing evidence for the relevance of SMN axonal functions in SMA pathogenesis, the specific contributions of FL-SMN and a-SMN are not known yet. This work aimed to analyze the differential roles of FL-SMN and a-SMN in axon outgrowth and in neuronal homeostasis during differentiation of neurons into a mature phenotype. We employed primary cultures of hippocampal neurons as a well-defined model of polarization and differentiation. By analyzing subcellular localization, we showed that a-SMN is preferentially localized in the growing axonal compartment. By specifically silencing FL-SMN or a-SMN proteins, we demonstrated that both proteins play a role in axon growth, as their selective down-regulation reduces axon length without affecting dendritic arborization. a-SMN silencing, and in minor extent FL-SMN silencing, resulted in the growth of multi-neuritic neurons, impaired in the differentiation process of selecting a single axon out of multiple neurites. In these neurons, neurites often display mixed axonal and dendritic markers and abnormal distribution of the axonal initial segment protein Ankirin G, suggesting loss of neuronal polarity. Our results indicate that a-SMN and FL-SMN are needed for neuronal polarization and organization of axonal and dendritic compartments, processes that are fundamental for neuronal function and survival.

摘要

脊髓性肌萎缩症(SMA)是一种严重的常染色体隐性疾病,其特征是运动神经元选择性退化,由运动神经元存活 1(Smn1)基因的破坏引起。SMN1 的主要产物是全长 SMN 蛋白(FL-SMN),该蛋白在 mRNA 剪接中发挥重要作用。FL-SMN 还参与轴突生长和轴突运输。较短的 SMN 同种型,轴突-SMN 或 a-SMN,显示出更特定的轴突定位,并且在 NSC-34 中具有显著的轴突发生特性。将已知的 SMA 突变引入 a-SMN 转录本会导致轴突生长受损和形态缺陷,类似于在 SMA 患者和动物模型中观察到的缺陷。尽管越来越多的证据表明 SMN 轴突功能与 SMA 发病机制有关,但 FL-SMN 和 a-SMN 的具体贡献尚不清楚。这项工作旨在分析 FL-SMN 和 a-SMN 在神经元分化为成熟表型过程中的轴突生长和神经元稳态中的差异作用。我们使用海马神经元的原代培养作为极化和分化的明确模型。通过分析亚细胞定位,我们表明 a-SMN 优先定位于生长的轴突区室。通过特异性沉默 FL-SMN 或 a-SMN 蛋白,我们证明这两种蛋白都在轴突生长中发挥作用,因为它们的选择性下调会减少轴突长度,而不会影响树突分支。FL-SMN 或 a-SMN 的沉默会导致多突神经元的生长,在选择多个轴突中的一个作为轴突的过程中受到损害。在这些神经元中,轴突经常显示混合的轴突和树突标记物,以及轴突起始段蛋白 Ankirin G 的异常分布,表明神经元极性丧失。我们的结果表明,a-SMN 和 FL-SMN 对于神经元极化和轴突和树突区室的组织是必需的,这些过程对于神经元功能和存活至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eaf/6001960/046edbe22fb8/pone.0199105.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验