Suppr超能文献

使用单个可穿戴惯性传感器自动描述犬类的步幅参数。

Automatic characterization of stride parameters in canines with a single wearable inertial sensor.

机构信息

Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America.

Department of Bioengineering, University of Missouri, Columbia, Missouri, United States of America.

出版信息

PLoS One. 2018 Jun 14;13(6):e0198893. doi: 10.1371/journal.pone.0198893. eCollection 2018.

Abstract

BACKGROUND AND OBJECTIVE

Gait analysis is valuable for studying neuromuscular and skeletal diseases. Wearable motion sensors or inertial measurement units (IMUs) have become common for human gait analysis. Canines are important large animal models for translational research of human diseases. Our objective is to develop a method for accurate and reliable determination of the timing of each stride in dogs using a wearable IMU.

METHODS

We built a wireless IMU sensor using off-the-shelf components. We also developed a MATLAB algorithm for data acquisition and stride timing determination. Stride parameters from 1,259 steps of three adult mixed breed dogs were determined across a range of six height-normalized speeds using the IMU system. The IMU results were validated by frame-by-frame manual counting of high-speed video recordings.

RESULTS

Comparing IMU derived results with video revealed that the mean error ± standard deviation for stride, stance, and swing duration was 0.001 ± 0.025, -0.001 ± 0.030, and 0.001 ± 0.019 s respectively. A mean error ± standard deviation of 0.000 ± 0.020 and -0.008 ± 0.027 s was obtained for determining toe-off and toe-touch events respectively. Only one step was missed by the algorithm in the video dataset of 1,259 steps.

CONCLUSION

We have developed and validated an IMU method for automatic canine gait analysis. Our method can be used for studying neuromuscular diseases in veterinary clinics and in translational research.

摘要

背景与目的

步态分析对于研究神经肌肉和骨骼疾病具有重要价值。可穿戴运动传感器或惯性测量单元(IMU)已成为人体步态分析的常用工具。犬类是研究人类疾病的重要大型动物模型。我们的目标是开发一种使用可穿戴 IMU 准确可靠地确定犬只每步时间的方法。

方法

我们使用现成的组件构建了一个无线 IMU 传感器。我们还开发了一个用于数据采集和步幅计时确定的 MATLAB 算法。我们使用 IMU 系统在 6 个高度归一化速度范围内确定了 3 只成年混合品种犬的 1259 步的步幅参数。IMU 结果通过高速视频记录的逐帧手动计数进行验证。

结果

将 IMU 得出的结果与视频进行比较,发现步幅、支撑和摆动持续时间的平均误差±标准偏差分别为 0.001±0.025、-0.001±0.030 和 0.001±0.019 s。确定足趾离地和足趾触地事件的平均误差±标准偏差分别为 0.000±0.020 和-0.008±0.027 s。在 1259 步的视频数据集中,算法仅错过了一步。

结论

我们已经开发并验证了一种用于自动犬步态分析的 IMU 方法。我们的方法可用于兽医诊所和转化研究中研究神经肌肉疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/6002023/95daabe139a0/pone.0198893.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验