Suppr超能文献

基于自适应主成分模板的 F-Flutemetamol PET 图像空间标准化。

Spatial Normalization of F-Flutemetamol PET Images Using an Adaptive Principal-Component Template.

机构信息

Uppsala University, Sweden.

Karolinska Institutet, Sweden.

出版信息

J Nucl Med. 2019 Feb 1;60(2):285-291. doi: 10.2967/jnumed.118.207811. Epub 2018 Jun 14.

Abstract

Though currently approved for visual assessment only, there is evidence to suggest that quantification of amyloid-β (Aβ) PET images may reduce interreader variability and aid in the monitoring of treatment effects in clinical trials. Quantification typically involves a regional atlas in standard space, requiring PET images to be spatially normalized. Different uptake patterns in Aβ-positive and Aβ-negative subjects, however, make spatial normalization challenging. In this study, we proposed a method to spatially normalize F-flutemetamol images using a synthetic template based on principal-component images to overcome these challenges. Methods: F-flutemetamol PET and corresponding MR images from a phase II trial (n = 70), including subjects ranging from Aβ-negative to Aβ-positive, were spatially normalized to standard space using an MR-driven registration method (SPM12). F-flutemetamol images were then intensity-normalized using the pons as a reference region. Principal-component images were calculated from the intensity-normalized images. A linear combination of the first 2 principal-component images was then used to model a synthetic template spanning the whole range from Aβ-negative to Aβ-positive. The synthetic template was then incorporated into our registration method, by which the optimal template was calculated as part of the registration process, providing a PET-only–driven registration method. Evaluation of the method was done in 2 steps. First, coregistered gray matter masks generated using SPM12 were spatially normalized using the PET- and MR-driven methods, respectively. The spatially normalized gray matter masks were then visually inspected and quantified. Second, to quantitatively compare the 2 registration methods, additional data from an ongoing study were spatially normalized using both methods, with correlation analysis done on the resulting cortical SUV ratios. Results: All scans were successfully spatially normalized using the proposed method with no manual adjustments performed. Both visual and quantitative comparison between the PET- and MR-driven methods showed high agreement in cortical regions. F-flutemetamol quantification showed strong agreement between the SUV ratios for the PET- and MR-driven methods (R = 0.996; pons reference region). Conclusion: The principal-component template registration method allows for robust and accurate registration of F-flutemetamol images to a standardized template space, without the need for an MR image.

摘要

虽然目前仅批准用于视觉评估,但有证据表明,定量分析淀粉样蛋白-β(Aβ)PET 图像可能会减少读者间的变异性,并有助于临床试验中治疗效果的监测。定量分析通常涉及标准空间中的区域图谱,需要对 PET 图像进行空间标准化。然而,Aβ 阳性和 Aβ 阴性受试者的不同摄取模式使得空间标准化具有挑战性。在这项研究中,我们提出了一种使用基于主成分图像的合成模板对 F-氟替美莫特图像进行空间标准化的方法,以克服这些挑战。方法:F-氟替美莫特 PET 和来自 II 期试验的相应 MR 图像(n=70),包括从 Aβ 阴性到 Aβ 阳性的受试者,使用基于 SPM12 的 MR 驱动的配准方法(SPM12)进行空间标准化。然后,使用脑桥作为参考区域对 F-氟替美莫特图像进行强度归一化。从强度归一化图像中计算出主成分图像。然后,使用前 2 个主成分图像的线性组合来模拟跨越从 Aβ 阴性到 Aβ 阳性整个范围的合成模板。然后,将合成模板纳入我们的配准方法中,作为配准过程的一部分计算最佳模板,提供一种仅 PET 驱动的配准方法。该方法的评估分两步进行。首先,使用 SPM12 生成的配准灰质掩模分别使用 PET 和 MR 驱动方法进行空间标准化,然后对空间标准化的灰质掩模进行视觉检查和量化。其次,为了定量比较两种配准方法,使用这两种方法对正在进行的研究中的额外数据进行空间标准化,并对得到的皮质 SUV 比进行相关分析。结果:使用提出的方法成功地对所有扫描进行了空间标准化,而无需进行手动调整。PET 和 MR 驱动方法之间的视觉和定量比较均显示皮质区域高度一致。F-氟替美莫特定量分析显示 PET 和 MR 驱动方法的 SUV 比之间具有很强的一致性(R=0.996;脑桥参考区域)。结论:主成分模板配准方法允许将 F-氟替美莫特图像准确地配准到标准化模板空间,而无需 MR 图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c69/8833851/a26e6eef388d/285fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验