Suppr超能文献

18F-氟美曲特成像数据自适应模板配准方法的实现与验证。

Implementation and validation of an adaptive template registration method for 18F-flutemetamol imaging data.

机构信息

GE Healthcare, Uppsala, Sweden.

出版信息

J Nucl Med. 2013 Aug;54(8):1472-8. doi: 10.2967/jnumed.112.115006. Epub 2013 Jun 5.

Abstract

UNLABELLED

The spatial normalization of PET amyloid imaging data is challenging because different white and gray matter patterns of negative (Aβ-) and positive (Aβ+) uptake could lead to systematic bias if a standard method is used. In this study, we propose the use of an adaptive template registration method to overcome this problem.

METHODS

Data from a phase II study (n = 72) were used to model amyloid deposition with the investigational PET imaging agent (18)F-flutemetamol. Linear regression of voxel intensities on the standardized uptake value ratio (SUVR) in a neocortical composite region for all scans gave an intercept image and a slope image. We devised a method where an adaptive template image spanning the uptake range (the most Aβ- to the most Aβ+ image) can be generated through a linear combination of these 2 images and where the optimal template is selected as part of the registration process. We applied the method to the (18)F-flutemetamol phase II data using a fixed volume of interest atlas to compute SUVRs. Validation was performed in several steps. The PET-only adaptive template registration method and the MR imaging-based method used in statistical parametric mapping were applied to spatially normalize PET and MR scans, respectively. Resulting transformations were applied to coregistered gray matter probability maps, and the quality of the registrations was assessed visually and quantitatively. For comparison of quantification results with an independent patient-space method, FreeSurfer was used to segment each subject's MR scan and the parcellations were applied to the coregistered PET scans. We then correlated SUVRs for a composite neocortical region obtained with both methods. Furthermore, to investigate whether the (18)F-flutemetamol model could be generalized to (11)C-Pittsburgh compound B ((11)C-PIB), we applied the method to Australian Imaging, Biomarkers and Lifestyle (AIBL) (11)C-PIB scans (n = 285) and compared the PET-only neocortical composite score with the corresponding score obtained with a semimanual method that made use of the subject's MR images for the positioning of regions.

RESULTS

Spatial normalization was successful on all scans. Visual and quantitative comparison of the new PET-only method with the MR imaging-based method of statistical parametric mapping indicated that performance was similar in the cortical regions although the new PET-only method showed better registration in the cerebellum and pons reference region area. For the (18)F-flutemetamol quantification, there was a strong correlation between the PET-only and FreeSurfer SUVRs (Pearson r = 0.96). We obtained a similar correlation for the AIBL (11)C-PIB data (Pearson r = 0.94).

CONCLUSION

The derived adaptive template registration method allows for robust, accurate, and fully automated quantification of uptake for (18)F-flutemetamol and (11)C-PIB scans without the use of MR imaging data.

摘要

目的

本研究旨在提出一种使用自适应模板配准方法来克服这一问题。

方法

使用来自 II 期研究(n=72)的数据,通过使用研究性 PET 成像剂(18)F-氟来建模淀粉样蛋白沉积。所有扫描的体素强度与新皮质复合区域标准化摄取比值(SUVR)的线性回归给出了截距图像和斜率图像。我们设计了一种方法,通过这 2 个图像的线性组合生成一个涵盖摄取范围的自适应模板图像(最 Aβ-至最 Aβ+图像),并且作为配准过程的一部分选择最佳模板。我们将该方法应用于 18F-氟来建模的 II 期数据,使用固定体积的感兴趣区图谱计算 SUVR。通过几个步骤进行验证。PET 仅自适应模板配准方法和统计参数映射中使用的基于磁共振成像的方法分别用于空间归一化 PET 和磁共振扫描。将得到的转换应用于配准的灰质概率图,并进行视觉和定量评估。为了比较与独立患者空间方法的定量结果,我们使用 FreeSurfer 对每个受试者的磁共振扫描进行分割,并将分割应用于配准的 PET 扫描。然后,我们对使用两种方法获得的复合新皮质区域的 SUVR 进行相关性分析。此外,为了研究 18F-氟来建模是否可以推广到 11C-匹兹堡化合物 B(11C-PIB),我们将该方法应用于澳大利亚成像、生物标志物和生活方式(AIBL)11C-PIB 扫描(n=285),并比较了仅使用 PET 的新皮质复合评分与使用基于受试者磁共振图像定位区域的半自动方法获得的相应评分。

结果

所有扫描的空间归一化均成功。新的仅使用 PET 的方法与基于磁共振成像的统计参数映射方法的视觉和定量比较表明,在皮质区域的性能相似,尽管新的仅使用 PET 的方法在小脑和脑桥参考区域的注册效果更好。对于 18F-氟来建模的定量,仅使用 PET 和 FreeSurfer 的 SUVR 之间存在很强的相关性(Pearson r=0.96)。我们还得到了 AIBL 11C-PIB 数据的类似相关性(Pearson r=0.94)。

结论

该方法允许对 18F-氟来建模和 11C-PIB 扫描进行稳健、准确且全自动的摄取定量,而无需使用磁共振成像数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验