Agaoglu Mehmet N, Sheehy Christy K, Tiruveedhula Pavan, Roorda Austin, Chung Susana T L
School of Optometry, University of California, Berkeley, Berkeley, CA, USA.
Vision Science Graduate Group, University of California, Berkeley, Berkeley, CA, USA.
J Vis. 2018 May 1;18(5):8. doi: 10.1167/18.5.8.
Human eyes are never stable, even during attempts of maintaining gaze on a visual target. Considering transient response characteristics of retinal ganglion cells, a certain amount of motion of the eyes is required to efficiently encode information and to prevent neural adaptation. However, excessive motion of the eyes leads to insufficient exposure to the stimuli, which creates blur and reduces visual acuity. Normal miniature eye movements fall in between these extremes, but it is unclear if they are optimally tuned for seeing fine spatial details. We used a state-of-the-art retinal imaging technique with eye tracking to address this question. We sought to determine the optimal gain (stimulus/eye motion ratio) that corresponds to maximum performance in an orientation-discrimination task performed at the fovea. We found that miniature eye movements are tuned but may not be optimal for seeing fine spatial details.
即使在试图注视视觉目标时,人眼也从不稳定。考虑到视网膜神经节细胞的瞬态响应特性,眼睛需要一定量的运动才能有效地编码信息并防止神经适应。然而,眼睛的过度运动会导致对刺激的暴露不足,从而产生模糊并降低视力。正常的微小眼球运动处于这两个极端之间,但尚不清楚它们是否针对看清精细的空间细节进行了最佳调节。我们使用了一种结合眼动追踪的先进视网膜成像技术来解决这个问题。我们试图确定在中央凹进行的方向辨别任务中对应于最佳表现的最佳增益(刺激/眼动比率)。我们发现微小眼球运动是经过调节的,但可能并非针对看清精细的空间细节进行了最佳调节。