Suppr超能文献

固视眼动的控制与功能。

Control and Functions of Fixational Eye Movements.

机构信息

Department of Psychological & Brain Sciences, Boston University, Boston, MA 02215; Graduate Program in Neuroscience, Boston University, Boston, MA 02215.

Department of Psychological & Brain Sciences, Boston University, Boston, MA 02215.

出版信息

Annu Rev Vis Sci. 2015 Nov;1:499-518. doi: 10.1146/annurev-vision-082114-035742. Epub 2015 Oct 14.

Abstract

Humans and other species explore a visual scene by rapidly shifting their gaze 2-3 times every second. Although the eyes may appear immobile in the brief intervals in between saccades, microscopic (fixational) eye movements are always present, even when attending to a single point. These movements occur during the very periods in which visual information is acquired and processed and their functions have long been debated. Recent technical advances in controlling retinal stimulation during normal oculomotor activity have shed new light on the visual contributions of fixational eye movements and their degree of control. The emerging body of evidence, reviewed in this article, indicates that fixational eye movements are important components of the strategy by which the visual system processes fine spatial details, enabling both precise positioning of the stimulus on the retina and encoding of spatial information into the joint space-time domain.

摘要

人类和其他物种通过每秒钟快速地扫视 2-3 次来探索视觉场景。尽管在扫视之间的短暂间隔中眼睛看起来是静止的,但微小的(固视的)眼球运动总是存在的,即使是在注视一个点的时候。这些运动发生在获取和处理视觉信息的时期,它们的功能一直存在争议。最近在正常眼球运动过程中控制视网膜刺激的技术进步,为固视眼球运动的视觉贡献及其控制程度提供了新的认识。本文综述了这方面的最新证据,表明固视眼球运动是视觉系统处理精细空间细节的策略的重要组成部分,使刺激在视网膜上的精确定位和空间信息编码到联合时空域成为可能。

相似文献

1
Control and Functions of Fixational Eye Movements.
Annu Rev Vis Sci. 2015 Nov;1:499-518. doi: 10.1146/annurev-vision-082114-035742. Epub 2015 Oct 14.
2
Consequences of the Oculomotor Cycle for the Dynamics of Perception.
Curr Biol. 2017 May 8;27(9):1268-1277. doi: 10.1016/j.cub.2017.03.034. Epub 2017 Apr 20.
3
Miniature eye movements enhance fine spatial detail.
Nature. 2007 Jun 14;447(7146):851-4. doi: 10.1038/nature05866.
4
Temporal encoding of spatial information during active visual fixation.
Curr Biol. 2012 Mar 20;22(6):510-4. doi: 10.1016/j.cub.2012.01.050. Epub 2012 Feb 16.
5
A physiological perspective on fixational eye movements.
Vision Res. 2016 Jan;118:31-47. doi: 10.1016/j.visres.2014.12.006. Epub 2014 Dec 20.
6
Visual signals contribute to the coding of gaze direction.
Exp Brain Res. 2002 Jun;144(3):281-92. doi: 10.1007/s00221-002-1029-5. Epub 2002 Apr 13.
8
Dynamics of fixational eye position and microsaccades during spatial cueing: the case of express microsaccades.
J Neurophysiol. 2018 May 1;119(5):1962-1980. doi: 10.1152/jn.00752.2017. Epub 2018 Feb 21.
9
Consequences of eye movements for spatial selectivity.
Curr Biol. 2024 Jul 22;34(14):3265-3272.e4. doi: 10.1016/j.cub.2024.06.016. Epub 2024 Jul 8.
10
1-D Vision: Encoding of Eye Movements by Simple Receptive Fields.
Perception. 2015;44(8-9):986-94. doi: 10.1177/0301006615594946.

引用本文的文献

1
The Optimal Retinal Locus for High-Resolution Vision in Space and Time.
bioRxiv. 2025 May 6:2025.04.30.650879. doi: 10.1101/2025.04.30.650879.
2
Stimulus-dependent delay of perceptual filling-in by microsaccades.
J Vis. 2025 Jul 1;25(8):8. doi: 10.1167/jov.25.8.8.
3
Vision toolkit part 1. Neurophysiological foundations and experimental paradigms in eye-tracking research: a review.
Front Physiol. 2025 Jun 19;16:1571534. doi: 10.3389/fphys.2025.1571534. eCollection 2025.
4
Eyes on hold: motion task difficulty jointly delays microsaccade and pupil responses.
Sci Rep. 2025 Jul 1;15(1):21284. doi: 10.1038/s41598-025-04748-0.
5
From eyes' microtremors to critical flicker fusion.
PLoS One. 2025 Jun 9;20(6):e0325391. doi: 10.1371/journal.pone.0325391. eCollection 2025.
6
7
Testing the top-down feedback in the central visual field using the reversed depth illusion.
iScience. 2025 Mar 15;28(4):112223. doi: 10.1016/j.isci.2025.112223. eCollection 2025 Apr 18.
9
How distinct sources of nuisance variability in natural images and scenes limit human stereopsis.
PLoS Comput Biol. 2025 Apr 15;21(4):e1012945. doi: 10.1371/journal.pcbi.1012945. eCollection 2025 Apr.
10
Active vision of bees in a simple pattern discrimination task.
Elife. 2025 Apr 10;14:e106332. doi: 10.7554/eLife.106332.

本文引用的文献

1
A physiological perspective on fixational eye movements.
Vision Res. 2016 Jan;118:31-47. doi: 10.1016/j.visres.2014.12.006. Epub 2014 Dec 20.
2
The visual input to the retina during natural head-free fixation.
J Neurosci. 2014 Sep 17;34(38):12701-15. doi: 10.1523/JNEUROSCI.0229-14.2014.
3
Fine-scale plasticity of microscopic saccades.
J Neurosci. 2014 Aug 27;34(35):11665-72. doi: 10.1523/JNEUROSCI.5277-13.2014.
4
Microscopic eye movements compensate for nonhomogeneous vision within the fovea.
Curr Biol. 2013 Sep 9;23(17):1691-5. doi: 10.1016/j.cub.2013.07.007. Epub 2013 Aug 15.
5
Alteration of visual perception prior to microsaccades.
Neuron. 2013 Feb 20;77(4):775-86. doi: 10.1016/j.neuron.2012.12.014.
6
Seeing via Miniature Eye Movements: A Dynamic Hypothesis for Vision.
Front Comput Neurosci. 2012 Nov 8;6:89. doi: 10.3389/fncom.2012.00089. eCollection 2012.
7
What is the best fixation target? The effect of target shape on stability of fixational eye movements.
Vision Res. 2013 Jan 14;76:31-42. doi: 10.1016/j.visres.2012.10.012. Epub 2012 Oct 23.
8
Microsaccadic efficacy and contribution to foveal and peripheral vision.
J Neurosci. 2012 Jul 4;32(27):9194-204. doi: 10.1523/JNEUROSCI.0515-12.2012.
9
Precision of sustained fixation in trained and untrained observers.
J Vis. 2012 Jun 22;12(6):31. doi: 10.1167/12.6.31.
10
Temporal encoding of spatial information during active visual fixation.
Curr Biol. 2012 Mar 20;22(6):510-4. doi: 10.1016/j.cub.2012.01.050. Epub 2012 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验