Suppr超能文献

新设计的针对多重耐药菌的蜂毒素衍生抗菌肽 MDP1 和 MDP2 的作用机制。

Action mechanism of melittin-derived antimicrobial peptides, MDP1 and MDP2, de novo designed against multidrug resistant bacteria.

机构信息

Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

出版信息

Amino Acids. 2018 Sep;50(9):1231-1243. doi: 10.1007/s00726-018-2596-5. Epub 2018 Jun 15.

Abstract

The emergence and dissemination of multidrug resistant (MDR) bacteria are major challenges for antimicrobial chemotherapy of bacterial infections. In this critical condition, cationic antimicrobial peptides are 'novel' promising candidate antibiotics to overcome the issue. In this study, we investigated the antibacterial mechanism of new melittin-derived peptides (i.e., MDP1 and MDP2) against multidrug resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. MDP1 was designed with deletion of three amino acid residues, i.e., S, W, and I, from the end of second hydrophobic motif of melittin. In the next step, VLTTG in MDP1 sequence was substituted with tryptophan residue. MDP1 and MDP2 had a high-antibacterial activity against MDR and reference strains of S. aureus, E. coli, and P. aeruginosa. DNA and calcein release and flow cytometry assays indicate a time-dependent antibacterial activity on the examined bacteria affected by both MDP1 and MDP2. Finally, SEM analyses highlighted dose- and time-dependent effects of MDP1 and MDP2 on S. aureus and E. coli bacteria by induction of vesicle or pore formation as well as cell lysis. In this study we successfully showed that rational truncation of large hydrophobic motifs can lead to significant reduction in toxicity against human RBCs and improving the antibacterial activity as well. Analyses of data from DNA release, fluorometry, flow cytometry, and morphological assays demonstrated that the MDP1 and MDP2 altered the integrity of both Gram-positive and Gram-negative bacterial membranes and killed the bacteria via membrane damages.

摘要

多药耐药(MDR)细菌的出现和传播是细菌感染抗菌化学疗法的主要挑战。在这种危急情况下,阳离子抗菌肽是克服这一问题的“新型”有前途的候选抗生素。在这项研究中,我们研究了新型蜂毒素衍生肽(即 MDP1 和 MDP2)对多药耐药金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌的抗菌机制。MDP1 通过从蜂毒素的第二个疏水性基序的末端删除三个氨基酸残基(S、W 和 I)而设计。在下一步中,将 MDP1 序列中的 VLTTG 替换为色氨酸残基。MDP1 和 MDP2 对 MDR 和金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌的参考菌株具有高抗菌活性。DNA 和钙黄绿素释放和流式细胞术分析表明,受 MDP1 和 MDP2 影响的检查细菌具有时间依赖性的抗菌活性。最后,SEM 分析强调了 MDP1 和 MDP2 对金黄色葡萄球菌和大肠杆菌的剂量和时间依赖性影响,通过诱导囊泡或孔形成以及细胞裂解来实现。在这项研究中,我们成功地表明,对大疏水性基序进行合理截断可以显著降低对人 RBC 的毒性,同时提高抗菌活性。DNA 释放、荧光计、流式细胞术和形态分析数据的分析表明,MDP1 和 MDP2 改变了革兰氏阳性和革兰氏阴性细菌膜的完整性,并通过膜损伤杀死了细菌。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验