Department of Physical Chemistry , University of Geneva , Geneva , Switzerland.
Interdisciplinary Center for Scientific Computing , University of Heidelberg , Heidelberg , Germany.
J Chem Theory Comput. 2018 Aug 14;14(8):4028-4040. doi: 10.1021/acs.jctc.8b00201. Epub 2018 Jul 2.
We present a thorough investigation of the errors in results obtained with the combination of frozen-density embedding theory and the algebraic diagrammatic construction scheme for the polarization propagator of second order (FDE-ADC(2)). The study was carried out on a set of 52 intermolecular complexes with varying interaction strength, each consisting of a chromophore of fundamental interest and a few small molecules in its environment. The errors emerging in frozen-density embedding theory-based methods originate from (a) the solver of the quantum many-body problem used to obtain the embedded wave function (Ψ), (b) the approximation for the explicit density functional for the embedding potential, and (c) the choice of the density representing the environment (ρ( r⃗)). The present work provides a comprehensive analysis of the errors in the excitation energies based on the last two factors. Furthermore, a density-overlap-based parameter is proposed to be used as an a priori criterion of applicability.
我们对冷冻密度嵌入理论与二阶极化传播子的代数图论构造方案(FDE-ADC(2))相结合所得到的结果中的误差进行了全面研究。该研究基于一组具有不同相互作用强度的 52 个分子间复合物,每个复合物由一个基本感兴趣的发色团和其环境中的几个小分子组成。基于冷冻密度嵌入理论的方法中出现的误差源于:(a)用于获得嵌入波函数(Ψ)的量子多体问题求解器,(b)嵌入势的显式密度泛函的近似,以及(c)代表环境的密度(ρ(r⃗))的选择。本工作对基于后两个因素的激发能误差进行了全面分析。此外,还提出了一个基于密度重叠的参数作为应用的先验判据。