Suppr超能文献

神经网络方法用于通过 X 射线吸收精细结构光谱学表征结构转变。

Neural Network Approach for Characterizing Structural Transformations by X-Ray Absorption Fine Structure Spectroscopy.

机构信息

Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA.

Institute of Solid State Physics, University of Latvia, Kengaraga Street 8, Riga, LV-1063, Latvia.

出版信息

Phys Rev Lett. 2018 Jun 1;120(22):225502. doi: 10.1103/PhysRevLett.120.225502.

Abstract

The knowledge of the coordination environment around various atomic species in many functional materials provides a key for explaining their properties and working mechanisms. Many structural motifs and their transformations are difficult to detect and quantify in the process of work (operando conditions), due to their local nature, small changes, low dimensionality of the material, and/or extreme conditions. Here we use an artificial neural network approach to extract the information on the local structure and its in situ changes directly from the x-ray absorption fine structure spectra. We illustrate this capability by extracting the radial distribution function (RDF) of atoms in ferritic and austenitic phases of bulk iron across the temperature-induced transition. Integration of RDFs allows us to quantify the changes in the iron coordination and material density, and to observe the transition from a body-centered to a face-centered cubic arrangement of iron atoms. This method is attractive for a broad range of materials and experimental conditions.

摘要

在许多功能材料中,了解各种原子物种的配位环境为解释它们的性质和工作机制提供了关键信息。由于其局部性质、小的变化、材料的低维性和/或极端条件,许多结构基元和它们的转变在工作过程中(operando 条件)很难被检测和量化。在这里,我们使用人工神经网络方法从 X 射线吸收精细结构光谱中直接提取关于局部结构及其原位变化的信息。我们通过提取块状铁的铁素体和奥氏体相中的原子的径向分布函数 (RDF)来说明这种能力,该函数跨越温度诱导的转变。RDF 的积分使我们能够量化铁配位和材料密度的变化,并观察到铁原子从体心立方排列到面心立方排列的转变。这种方法对于广泛的材料和实验条件都具有吸引力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验