Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, China.
Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China.
Chemosphere. 2018 Oct;208:793-799. doi: 10.1016/j.chemosphere.2018.06.060. Epub 2018 Jun 14.
To exploit the advantages of less electron donor consumptions in partial-denitrification (denitratation, NO → NO) as well as less sludge production in autotrophic denitrification (AD) and anammox, a novel biological nitrogen removal (BNR) process through combined anammox and thiosulfate-driven denitratation was proposed here. In this study, the ratio of SO-S/NO-N and pH are confirmed to be two key factors affecting the thiosulfate-driven denitratation activity and nitrite accumulation. Simultaneous high denitratation activity and substantial nitrite accumulation were observed at initial SO-S/NO-N ratio of 1.5:1 and pH of 8.0. The optimal pH for the anammox reaction is determined to be 8.0. A sequential batch reactor (SBR) and an up-flow anaerobic sludge blanket (UASB) reactor were established to proceed the anammox and the high-rate thiosulfate-driven denitratation, respectively. Under the ambient temperature of 35 °C, the total nitrogen removal efficiency and capacity are 73% and 0.35 kg N/day/m in the anammox-SBR. At HRT of 30 min, the NO removal efficiency could achieve above 90% with the nitrate-to-nitrite transformation ratio of 0.8, implying the great potential to apply the thiosulfate-driven denitratation & anammox system for BNR with minimal sludge production. Without the occurrence of denitritation (NO → NO → N), theoretically no NO could be emitted from this BNR system. This study could shed light on how to operate a high rate BNR system targeting to electron donor and energy savings as well as biowastes minimization and greenhouse gas reductions.
为了利用部分反硝化(亚硝化为 NO→NO)中电子供体消耗较少和自养反硝化(AD)及厌氧氨氧化中污泥产量较少的优势,本研究提出了一种通过结合厌氧氨氧化和硫代硫酸盐驱动反硝化的新型生物脱氮(BNR)工艺。在本研究中,SO-S/NO-N 比和 pH 被证实是影响硫代硫酸盐驱动反硝化活性和亚硝酸盐积累的两个关键因素。在初始 SO-S/NO-N 比为 1.5:1 和 pH 为 8.0 的条件下,观察到同时具有高反硝化活性和大量亚硝酸盐积累。确定厌氧氨氧化反应的最佳 pH 值为 8.0。建立了序批式反应器(SBR)和上流式厌氧污泥床(UASB)反应器,分别进行厌氧氨氧化和高硫代硫酸盐驱动反硝化。在 35°C 的环境温度下,在厌氧氨氧化-SBR 中,总氮去除效率和容量分别为 73%和 0.35kgN/day/m。在 HRT 为 30min 的条件下,NO 去除效率可达到 90%以上,硝酸盐到亚硝酸盐的转化率为 0.8,这意味着该硫代硫酸盐驱动反硝化-厌氧氨氧化系统具有很大的潜力,可用于最小化污泥产量的 BNR。如果不发生反硝化(NO→NO→N),那么从这个 BNR 系统理论上不会有 NO 排放。本研究可以为如何操作一个高效的 BNR 系统提供启示,该系统旨在节约电子供体和能源,以及减少生物废物和温室气体排放。