Suppr超能文献

在单级序批式反应器中通过硫代硫酸盐依赖反硝化耦合厌氧氨氧化形成电子缓冲。

Electron buffer formation through coupling thiosulfate-dependent denitratation with anammox in a single-stage sequencing batch reactor.

机构信息

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400045, China.

School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, China.

出版信息

Bioresour Technol. 2020 Sep;312:123560. doi: 10.1016/j.biortech.2020.123560. Epub 2020 May 20.

Abstract

The combination of thiosulfate-dependent denitratation and anammox in a single-stage reactor provides a feasible way to improve total nitrogen removal. The molar ratios of NH/NO and SO/NO were confirmed to be two key factors affecting the reactor performance. The optimal total nitrogen removal efficiency of 99.4% was achieved at NH/NO of 0.75 and SO/NO of 0.85. The multiple thiosulfate oxidation pathways contribute to electron buffers generated in the system. A novel isotope labeling method using N was applied to reveal N transformation pathways and a 3-step model was proposed. The nitrate was first converted to nitrite or nitric oxide (NO) by sulfur-oxidizing bacteria. In the second step, both nitrite and NO were utilized by anammox bacteria. Finally, the nitrate generated from anammox could be removed using sulfur deposits as electron donors. The findings provide a potential solution for mainstream nitrogen removal.

摘要

硫代硫酸盐依赖型反硝化与厌氧氨氧化在单级反应器中的结合为提高总氮去除率提供了一种可行的方法。NH/NO 和 SO/NO 的摩尔比被证实是影响反应器性能的两个关键因素。在 NH/NO 为 0.75 和 SO/NO 为 0.85 的条件下,实现了最佳的总氮去除效率 99.4%。多种硫代硫酸盐氧化途径有助于系统中产生电子缓冲剂。采用 N 的新型同位素标记方法揭示了 N 转化途径,并提出了一个 3 步模型。硝酸盐首先被硫氧化菌转化为亚硝酸盐或一氧化氮 (NO)。在第二步中,厌氧氨氧化菌利用亚硝酸盐和 NO。最后,厌氧氨氧化生成的硝酸盐可以使用硫沉积物作为电子供体去除。研究结果为主流脱氮提供了一种潜在的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验