Suppr超能文献

在持续刺激下,人类大脑静息状态网络的尺度不变重排。

Scale-invariant rearrangement of resting state networks in the human brain under sustained stimulation.

机构信息

Centro Fermi - Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Roma, Italy; Dipartimento di Neuroscienze umane, Sapienza Università di Roma, Roma, Italy.

Centro Fermi - Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Roma, Italy.

出版信息

Neuroimage. 2018 Oct 1;179:570-581. doi: 10.1016/j.neuroimage.2018.06.006. Epub 2018 Jul 5.

Abstract

Brain activity at rest is characterized by widely distributed and spatially specific patterns of synchronized low-frequency blood-oxygenation level-dependent (BOLD) fluctuations, which correspond to physiologically relevant brain networks. This network behaviour is known to persist also during task execution, yet the details underlying task-associated modulations of within- and between-network connectivity are largely unknown. In this study we exploited a multi-parametric and multi-scale approach to investigate how low-frequency fluctuations adapt to a sustained n-back working memory task. We found that the transition from the resting state to the task state involves a behaviourally relevant and scale-invariant modulation of synchronization patterns within both task-positive and default mode networks. Specifically, decreases of connectivity within networks are accompanied by increases of connectivity between networks. In spite of large and widespread changes of connectivity strength, the overall topology of brain networks is remarkably preserved. We show that these findings are strongly influenced by connectivity at rest, suggesting that the absolute change of connectivity (i.e., disregarding the baseline) may not be the most suitable metric to study dynamic modulations of functional connectivity. Our results indicate that a task can evoke scale-invariant, distributed changes of BOLD fluctuations, further confirming that low frequency BOLD oscillations show a specialized response and are tightly bound to task-evoked activation.

摘要

静息状态下的大脑活动以广泛分布且具有空间特异性的同步低频血氧水平依赖(BOLD)波动模式为特征,这些波动模式与生理相关的大脑网络相对应。已知这种网络行为在执行任务期间也会持续存在,但与任务相关的网络内和网络间连通性调节的细节在很大程度上尚不清楚。在这项研究中,我们利用多参数和多尺度方法来研究低频波动如何适应持续的 n 回工作记忆任务。我们发现,从静息状态到任务状态的转变涉及到任务正性和默认模式网络内同步模式的行为相关且具有尺度不变性的调节。具体来说,网络内的连通性降低伴随着网络间的连通性增加。尽管连通性强度发生了广泛的变化,但大脑网络的整体拓扑结构仍然得以保持。我们表明,这些发现受到静息状态下连通性的强烈影响,这表明连通性的绝对变化(即不考虑基线)可能不是研究功能连通性动态调节的最合适指标。我们的研究结果表明,任务可以引起 BOLD 波动的具有尺度不变性的分布式变化,进一步证实低频 BOLD 振荡具有专门的反应,并且与任务引发的激活紧密相关。

相似文献

4
Default network connectivity during a working memory task.工作记忆任务期间的默认网络连通性。
Hum Brain Mapp. 2011 Jul;32(7):1029-35. doi: 10.1002/hbm.21090. Epub 2010 Jul 20.

引用本文的文献

7
Brain Network Modularity During a Sustained Working-Memory Task.持续工作记忆任务期间的脑网络模块化
Front Physiol. 2020 May 8;11:422. doi: 10.3389/fphys.2020.00422. eCollection 2020.

本文引用的文献

3
Task-based dynamic functional connectivity: Recent findings and open questions.基于任务的动态功能连接:最新发现与待解决问题
Neuroimage. 2018 Oct 15;180(Pt B):526-533. doi: 10.1016/j.neuroimage.2017.08.006. Epub 2017 Aug 3.
5
10
Default Mode Dynamics for Global Functional Integration.全球功能整合的默认模式动力学
J Neurosci. 2015 Nov 18;35(46):15254-62. doi: 10.1523/JNEUROSCI.2135-15.2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验