Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Biosens Bioelectron. 2018 Oct 15;117:240-245. doi: 10.1016/j.bios.2018.06.023. Epub 2018 Jun 9.
In this work, a novel surface plasmon resonance (SPR) enhanced electrochemiluminescence (ECL) biosensing model was first designed based on Au NPs@polydopamine (PDA)@CuInZnS QDs nanocomposite. Au NPs were coated with the PDA layer via the electrostatic force. CuInZnS QDs were bound on the surface of Au NPs@PDA nanocomposite. CuInZnS QDs worked as ECL luminophore in the sensing application. PDA shell not only controlled the separation length between Au NPs and QDs to induce SPR enhanced ECL response, but also limited the potential charge transfer and ECL quenching effect. As a result, the nanocomposite ECL intensity was twice that of QDs with KSO. The tumor suppressor p53 gene was detected in the amplified ECL sensing system. The sensing method has a linear response in the range of 0.1 nmol/L to 15 nmol/L with a detection limit of 0.03 nmol/L. The DNA biosensor based on the nanocomposite showed excellent sensitivity, selectivity, reproducibility and stability and was applied in spiked human serum samples with satisfactory results.
在这项工作中,首次设计了一种基于 Au NPs@聚多巴胺(PDA)@CuInZnS QDs 纳米复合材料的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型。Au NPs 通过静电力涂覆有 PDA 层。CuInZnS QDs 结合在 Au NPs@PDA 纳米复合材料的表面。在传感应用中,CuInZnS QDs 用作 ECL 发光体。PDA 壳不仅控制了 Au NPs 和 QDs 之间的分离长度,以诱导 SPR 增强的 ECL 响应,而且限制了潜在的电荷转移和 ECL 猝灭效应。结果,纳米复合材料的 ECL 强度是与 KSO 结合的 QDs 的两倍。在放大的 ECL 传感系统中检测了肿瘤抑制因子 p53 基因。该传感方法在 0.1 nmol/L 至 15 nmol/L 的范围内具有线性响应,检测限为 0.03 nmol/L。基于纳米复合材料的 DNA 生物传感器表现出优异的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品中,结果令人满意。