Suppr超能文献

一种用于提取表面肌电图(sEMG)包络的自动、自适应、基于信息的算法。

An automatic, adaptive, information-based algorithm for the extraction of the sEMG envelope.

作者信息

Ranaldi Simone, De Marchis Cristiano, Conforto Silvia

机构信息

Laboratory of Bioengineering Biolab3, Department of Engineering, University Roma TRE, Via Vito Volterra 62, 00146 Rome, Italy.

出版信息

J Electromyogr Kinesiol. 2018 Oct;42:1-9. doi: 10.1016/j.jelekin.2018.06.001. Epub 2018 Jun 15.

Abstract

Surface ElectroMyography (sEMG) is widely used as a non-invasive tool for the assessment of motor control strategies. However, the standardization of the methods used for the estimation of sEMG amplitude is a problem yet to be solved; in most cases, sEMG amplitude is estimated through the extraction of the envelope of the signal via different low-pass filtering procedures with fixed cut-off frequencies chosen by the experimenter. In this work, we have shown how it is not possible to find the optimal choice of the cut-off frequency without any a priori knowledge on the signal; considering this, we have proposed an updated version of an iterative adaptive algorithm already present in literature, aiming to completely automatize the sEMG amplitude estimation. We have compared our algorithm to most of the typical solutions (fixed window filters and the previous version of the adaptive algorithm) for the extraction of the sEMG envelope, showing how the proposed adaptive procedure significantly improves the quality of the estimation, with a lower fraction of variance unexplained by the extracted envelope for different simulated modulating waveforms (p < 0.005). The definition of an entropy-based convergence criterion has allowed for a complete automatization of the process. We infer that this algorithm can ensure repeatability of the estimation of the sEMG amplitude, due to its independence from the experimental choices, so allowing for a quantitative interpretation in a clinical environment.

摘要

表面肌电图(sEMG)作为一种用于评估运动控制策略的非侵入性工具被广泛应用。然而,用于估计sEMG幅度的方法的标准化仍是一个有待解决的问题;在大多数情况下,sEMG幅度是通过实验者选择的具有固定截止频率的不同低通滤波程序来提取信号包络进行估计的。在这项工作中,我们已经表明,在对信号没有任何先验知识的情况下,不可能找到截止频率的最佳选择;考虑到这一点,我们提出了文献中已有的一种迭代自适应算法的更新版本,旨在使sEMG幅度估计完全自动化。我们将我们的算法与用于提取sEMG包络的大多数典型解决方案(固定窗口滤波器和自适应算法的先前版本)进行了比较,结果表明所提出的自适应过程显著提高了估计质量,对于不同的模拟调制波形,提取的包络无法解释的方差比例更低(p < 0.005)。基于熵的收敛准则的定义实现了该过程的完全自动化。我们推断,由于该算法不依赖于实验选择,因此可以确保sEMG幅度估计的可重复性,从而在临床环境中实现定量解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验