Fang Ge-Min, Chamiolo Jasmine, Kankowski Svenja, Hövelmann Felix, Friedrich Dhana, Löwer Alexander, Meier Jochen C, Seitz Oliver
Department of Chemistry , Humboldt-Universität zu Berlin , Brook-Taylor-Strasse 2 , D-12489 Berlin , Germany . Email:
Institute of Physical Science and Information Technology , Anhui University , Hefei , Anhui 230601 , China.
Chem Sci. 2018 May 2;9(21):4794-4800. doi: 10.1039/c8sc00457a. eCollection 2018 Jun 7.
Oligonucleotide probes that show enhanced fluorescence upon nucleic acid hybridization enable the detection and visualization of specific mRNA molecules, and . A challenging problem is the analysis of single nucleotide alterations that occur, for example, when cellular mRNA is subject to C → U editing. Given the length required for uniqueness of the targeted segment, the commonly used probes do not provide the level of sequence specificity needed to discriminate single base mismatched hybridization. Herein we introduce a binary probe system based on fluorescence resonance energy transfer (FRET) that distinguishes three possible states (i) absence of target, (ii) presence of edited (matched) and (iii) unedited (single base mismatched) target. To address the shortcomings of read-out FRET, we designed donor probes that avoid bleed through into the acceptor channel and nevertheless provide a high intensity of FRET signaling. We show the combined use of thiazole orange (TO) and an oxazolopyridine analogue (JO), linked as base surrogates in modified PNA FIT-probes that serve as FRET donor for a second, near-infrared (NIR)-labeled strand. In absence of target, donor emission is low and FRET cannot occur of the lacking co-alignment of probes. Hybridization of the TO/JO-PNA FIT-probe with the (unedited RNA) target leads to high brightness of emission at 540 nm. Co-alignment of the NIR-acceptor strand ensues from recognition of edited RNA inducing emission at 690 nm. We show imaging of mRNA in fixed and live cells and discuss the homogeneous detection and intracellular imaging of a single nucleotide mRNA edit used by nature to post-transcriptionally modify the function of the Glycine Receptor (GlyR).
在核酸杂交时显示出增强荧光的寡核苷酸探针能够实现特定mRNA分子的检测和可视化。一个具有挑战性的问题是分析例如细胞mRNA发生C→U编辑时出现的单核苷酸改变。考虑到靶向片段唯一性所需的长度,常用探针无法提供区分单碱基错配杂交所需的序列特异性水平。在此,我们引入了一种基于荧光共振能量转移(FRET)的二元探针系统,该系统可区分三种可能的状态:(i)无靶标,(ii)存在编辑后的(匹配的)靶标,以及(iii)未编辑的(单碱基错配的)靶标。为了解决读出FRET的缺点,我们设计了供体探针,避免其渗漏到受体通道中,同时仍能提供高强度的FRET信号。我们展示了噻唑橙(TO)和恶唑吡啶类似物(JO)的联合使用,它们作为碱基类似物连接在修饰的肽核酸FIT-探针中,作为第二条近红外(NIR)标记链的FRET供体。在无靶标的情况下,由于探针缺乏共排列,供体发射较低且无法发生FRET。TO/JO-肽核酸FIT-探针与(未编辑的RNA)靶标杂交会导致在540nm处发射高亮度荧光。近红外受体链的共排列是由于对编辑后的RNA的识别导致在690nm处发射荧光。我们展示了固定细胞和活细胞中mRNA的成像,并讨论了自然界用于转录后修饰甘氨酸受体(GlyR)功能的单核苷酸mRNA编辑的均相检测和细胞内成像。