Zhou Qian M, Zheng Yingye, Cai Tianxi
aDepartment of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada.
Clin Trials. 2013 Oct;10(5):677-9. doi: 10.1177/1740774513498321. Epub 2013 Sep 6.
Accurate risk prediction plays a key role in disease prevention and disease management; emergence of new biomarkers may lead to an important question about how much improvement in prediction accuracy it would achieve by adding the new markers into the existing risk prediction tools.
In large prospective cohort studies, the standard full-cohort design, requiring marker measurement on the entire cohort, may be infeasible due to cost and low rate of the clinical condition of interest. To overcome such difficulties, nested case-control (NCC) studies provide cost-effective alternatives but bring about challenges in statistical analyses due to complex data sets generated.
To evaluate prognostic accuracy of a risk model, Cai and Zheng proposed a class of nonparametric inverse probability weighting (IPW) estimators for accuracy measures in the time-dependent receiver operating characteristic curve analysis. To accommodate a three-phase NCC design in Nurses' Health Study, we extend the double IPW estimators of Cai and Zheng to develop risk prediction models under time-dependent generalized linear models and evaluate the incremental values of new biomarkers and genetic markers.
Our results suggest that aggregating the information from both the genetic markers and biomarkers substantially improves the accuracy for predicting 5-year and 10-year risks of rheumatoid arthritis.
Our method provided robust procedures to evaluate the incremental value of new biomarkers allowing for complex sampling designs.
准确的风险预测在疾病预防和疾病管理中起着关键作用;新生物标志物的出现可能引发一个重要问题,即把新标志物添加到现有的风险预测工具中能在多大程度上提高预测准确性。
在大型前瞻性队列研究中,由于成本以及所关注临床状况的低发生率,要求对整个队列进行标志物测量的标准全队列设计可能不可行。为克服此类困难,巢式病例对照(NCC)研究提供了具有成本效益的替代方案,但由于产生的数据集复杂,给统计分析带来了挑战。
为评估风险模型的预后准确性,蔡和郑提出了一类非参数逆概率加权(IPW)估计量,用于时间依赖型受试者工作特征曲线分析中的准确性度量。为适应护士健康研究中的三相NCC设计,我们扩展了蔡和郑的双重IPW估计量,以在时间依赖型广义线性模型下开发风险预测模型,并评估新生物标志物和遗传标志物的增量值。
我们的结果表明,整合遗传标志物和生物标志物的信息可显著提高预测类风湿关节炎5年和10年风险的准确性。
我们的方法提供了稳健的程序来评估新生物标志物的增量值,同时考虑了复杂的抽样设计。