Suppr超能文献

线粒体凋亡途径随机模型的参数敏感性分析。

Parameter sensitivity analysis for a stochastic model of mitochondrial apoptosis pathway.

机构信息

The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing, China.

College of Mathematics and Compute Science, Hunan Normal University, Changsha, China.

出版信息

PLoS One. 2018 Jun 18;13(6):e0198579. doi: 10.1371/journal.pone.0198579. eCollection 2018.

Abstract

Understanding how gene alterations induce oncogenesis plays an important role in cancer research and may be instructive for cancer prevention and treatment. We conducted a parameter sensitivity analysis to the mitochondrial apoptosis model. Both a nonlinear bifurcation analysis of the deterministic dynamics and energy barrier analysis of the corresponding stochastic models were performed. We found that the parameter sensitivity ranking according to the change of the bifurcation-point locations in deterministic models and the change of the barrier heights from a living to death state of the cell in stochastic models are highly correlated. For the model we considered, in combination with previous knowledge that the parameters significantly affecting the system's bifurcation point are strongly associated with frequently mutated oncogenic genes, we conclude that the energy barrier height can be used as indicator of oncogenesis as well as bifurcation point. We provide a possible mechanism that may help elucidate the logic of cancer initiation from the view of stochastic dynamics and energy landscape. And we show the equivalence of energy barrier height and bifurcation-point location in determining the parameter sensitivity spectrum for the first time.

摘要

了解基因改变如何诱导肿瘤发生在癌症研究中起着重要作用,并且可能对癌症的预防和治疗具有指导意义。我们对线粒体凋亡模型进行了参数敏感性分析。对确定性动力学进行了非线性分岔分析,对相应的随机模型进行了能量势垒分析。我们发现,根据确定性模型中分叉点位置的变化和随机模型中细胞从存活状态到死亡状态的势垒高度的变化,参数敏感性排序具有高度相关性。对于我们所考虑的模型,结合先前的知识,即显著影响系统分叉点的参数与经常发生突变的致癌基因密切相关,我们得出结论,能量势垒高度可以作为肿瘤发生的指标,也可以作为分叉点的指标。我们提供了一种可能的机制,从随机动力学和能量景观的角度可以帮助阐明癌症发生的逻辑。并且我们首次表明,在确定参数敏感性谱方面,能量势垒高度和分叉点位置是等效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8e74/6005494/860ee975d35c/pone.0198579.g001.jpg

相似文献

1
Parameter sensitivity analysis for a stochastic model of mitochondrial apoptosis pathway.
PLoS One. 2018 Jun 18;13(6):e0198579. doi: 10.1371/journal.pone.0198579. eCollection 2018.
2
Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4046-54. doi: 10.1073/pnas.1502126112. Epub 2015 Jul 13.
3
The mitochondrial dynamics in cancer and immune-surveillance.
Semin Cancer Biol. 2017 Dec;47:29-42. doi: 10.1016/j.semcancer.2017.06.007. Epub 2017 Jun 24.
4
Relationship between cancer mutations and parameter sensitivity in Rb pathway.
J Theor Biol. 2016 Sep 7;404:120-125. doi: 10.1016/j.jtbi.2016.05.010. Epub 2016 May 13.
5
A new class of non-linear stochastic population models with mass conservation.
Math Biosci. 2007 Dec;210(2):378-94. doi: 10.1016/j.mbs.2007.05.010. Epub 2007 Jun 20.
6
Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model.
Chaos. 2013 Sep;23(3):033125. doi: 10.1063/1.4818545.
7
Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks.
J R Soc Interface. 2015 Jul 6;12(108):20150233. doi: 10.1098/rsif.2015.0233.
8
Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Dec;80(6 Pt 1):061920. doi: 10.1103/PhysRevE.80.061920. Epub 2009 Dec 31.
9
Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model.
PLoS Comput Biol. 2014 Jan;10(1):e1003451. doi: 10.1371/journal.pcbi.1003451. Epub 2014 Jan 23.
10
Heart rate variability as determinism with jump stochastic parameters.
Math Biosci Eng. 2013 Aug;10(4):1253-64. doi: 10.3934/mbe.2013.10.1253.

引用本文的文献

1
Network motifs and hypermotifs in TGFβ-induced epithelial to mesenchymal transition and metastasis.
Front Syst Biol. 2023 Mar 3;3:1099951. doi: 10.3389/fsysb.2023.1099951. eCollection 2023.
2
Bayesian calibration of a stochastic, multiscale agent-based model for predicting in vitro tumor growth.
PLoS Comput Biol. 2021 Nov 29;17(11):e1008845. doi: 10.1371/journal.pcbi.1008845. eCollection 2021 Nov.

本文引用的文献

1
Relationship between cancer mutations and parameter sensitivity in Rb pathway.
J Theor Biol. 2016 Sep 7;404:120-125. doi: 10.1016/j.jtbi.2016.05.010. Epub 2016 May 13.
3
Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):E4046-54. doi: 10.1073/pnas.1502126112. Epub 2015 Jul 13.
4
Energy landscape reveals that the budding yeast cell cycle is a robust and adaptive multi-stage process.
PLoS Comput Biol. 2015 Mar 20;11(3):e1004156. doi: 10.1371/journal.pcbi.1004156. eCollection 2015 Mar.
5
Mitochondrial apoptosis: killing cancer using the enemy within.
Br J Cancer. 2015 Mar 17;112(6):957-62. doi: 10.1038/bjc.2015.85.
6
Putting the pieces together: How is the mitochondrial pathway of apoptosis regulated in cancer and chemotherapy?
Cancer Metab. 2014 Oct 6;2:16. doi: 10.1186/2049-3002-2-16. eCollection 2014.
7
Quantifying the underlying landscape and paths of cancer.
J R Soc Interface. 2014 Nov 6;11(100):20140774. doi: 10.1098/rsif.2014.0774.
8
Constructing the energy landscape for genetic switching system driven by intrinsic noise.
PLoS One. 2014 Feb 13;9(2):e88167. doi: 10.1371/journal.pone.0088167. eCollection 2014.
9
Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model.
PLoS Comput Biol. 2014 Jan;10(1):e1003451. doi: 10.1371/journal.pcbi.1003451. Epub 2014 Jan 23.
10
Quasi-potential landscape in complex multi-stable systems.
J R Soc Interface. 2012 Dec 7;9(77):3539-53. doi: 10.1098/rsif.2012.0434. Epub 2012 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验