Suppr超能文献

应用能量色散 X 射线荧光光谱法测定放牧农业系统中黑麦草(Lolium perenne)中的铜、锰、锌和硫。

Application of Energy Dispersive X-ray Fluorescence Spectrometry to the Determination of Copper, Manganese, Zinc, and Sulfur in Grass ( Lolium perenne) in Grazed Agricultural Systems.

机构信息

Environment, Soils and Land Use Department, Teagasc, Johnstown Castle Research Centre, Wexford, Ireland.

出版信息

Appl Spectrosc. 2018 Nov;72(11):1661-1673. doi: 10.1177/0003702818787165. Epub 2018 Jul 20.

Abstract

Conventional methods for the determination of major nutrients and trace elements in grass rely on acid digestion followed by analysis using inductively coupled plasma optical emission spectrometry (ICP-OES), which can be both time consuming and costly. Energy dispersive X-ray fluorescence (EDXRF) spectrometry offers a rapid alternative that can determine multiple elements in a single scan. Copper, Mn, Zn, and S in grass samples were determined using EDXRF with a number of different calibration approaches using both empirical standards and the theoretical relationships between concentrations and intensities. Using an existing archive of 467 grass samples of known concentrations, a suite of 30 samples was selected as empirical grass standards to build a calibration set between sample concentrations and EDXRF intensities. The theoretical or standardless approach used the fundamental parameters method to determine element concentrations. To validate the two calibration methods, 59 samples were randomly selected from the same archive and database and analyzed by EDXRF. The measurements of Cu, Mn, Zn, and S were compared with the ICP-OES values using agreement statistics. An excellent correlation was observed between the concentrations determined by EDXRF and ICP-OES ( R > 0.90) regardless of the calibration approach. However, agreement and closeness to the true value varied and were assessed using agreement statistics. Across all elements, the empirically calibrated samples were in excellent agreement with the values determined by ICP-OES. The theoretical calibrations provided excellent agreement for Mn and Zn, but a degree of fixed and proportional bias was observed in the Cu and S values. Fixed bias was corrected by subtracting the computed bias from the EDXRF concentrations and improved the overall agreement. Similarly, proportional bias was corrected using the linear regression model to predict the corrected EDXRF values. This improved the overall agreement with the ICP-OES values for both Cu and S using corrected fundamental parameters calibrations. This study provides a practical basis for the use of EDXRF to determine Cu, Mn, Zn, and S in grass samples to monitor forage quality in grazed systems without the need for sample digestion. The observed fixed and proportional bias in the theoretical calibrations can be corrected provided that a good correlation exists between EDXRF and conventional methods.

摘要

传统的牧草主要营养元素和微量元素的测定方法依赖于酸消解,然后使用电感耦合等离子体光学发射光谱法(ICP-OES)进行分析,这既耗时又昂贵。能量色散 X 射线荧光光谱法(EDXRF)提供了一种快速替代方法,可以在单次扫描中同时测定多种元素。本研究采用 EDXRF 测定了牧草样品中的 Cu、Mn、Zn 和 S,采用了多种不同的校准方法,包括经验标准和浓度与强度之间的理论关系。使用已知浓度的 467 个牧草样本的现有档案,选择了 30 个样本作为经验牧草标准,以建立样本浓度与 EDXRF 强度之间的校准集。理论或无标准方法使用基本参数法来确定元素浓度。为了验证两种校准方法,从同一档案和数据库中随机选择 59 个样本,并用 EDXRF 进行分析。使用一致性统计数据比较 Cu、Mn、Zn 和 S 的测量值与 ICP-OES 值。EDXRF 测定的浓度与 ICP-OES ( R > 0.90)之间存在极好的相关性,无论使用哪种校准方法。然而,一致性和与真实值的接近程度因一致性统计数据而异。对于所有元素,经验校准的样本与 ICP-OES 测定的值非常一致。理论校准对 Mn 和 Zn 提供了极好的一致性,但在 Cu 和 S 值中观察到一定程度的固定和比例偏差。通过从 EDXRF 浓度中减去计算的偏差来校正固定偏差,从而提高了整体一致性。同样,通过使用线性回归模型预测校正后的 EDXRF 值来校正比例偏差。使用校正后的基本参数校准对 Cu 和 S 进行校正后,这提高了与 ICP-OES 值的整体一致性。本研究为使用 EDXRF 测定牧草样品中的 Cu、Mn、Zn 和 S 提供了实用依据,无需对样品进行消解,即可监测放牧系统中的饲草质量。只要 EDXRF 和常规方法之间存在良好的相关性,就可以校正理论校准中观察到的固定和比例偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验