Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot, Israel.
PLoS Comput Biol. 2018 Jun 19;14(6):e1006192. doi: 10.1371/journal.pcbi.1006192. eCollection 2018 Jun.
Prediction of drug combinations that effectively target cancer cells is a critical challenge for cancer therapy, in particular for triple-negative breast cancer (TNBC), a highly aggressive breast cancer subtype with no effective targeted treatment. As signalling pathway networks critically control cancer cell behaviour, analysis of signalling network activity and crosstalk can help predict potent drug combinations and rational stratification of patients, thus bringing therapeutic and prognostic values. We have previously showed that the non-receptor tyrosine kinase PYK2 is a downstream effector of EGFR and c-Met and demonstrated their crosstalk signalling in basal-like TNBC. Here we applied a systems modelling approach and developed a mechanistic model of the integrated EGFR-PYK2-c-Met signalling network to identify and prioritize potent drug combinations for TNBC. Model predictions validated by experimental data revealed that among six potential combinations of drug pairs targeting the central nodes of the network, including EGFR, c-Met, PYK2 and STAT3, co-targeting of EGFR and PYK2 and to a lesser extent of EGFR and c-Met yielded strongest synergistic effect. Importantly, the synergy in co-targeting EGFR and PYK2 was linked to switch-like cell proliferation-associated responses. Moreover, simulations of patient-specific models using public gene expression data of TNBC patients led to predictive stratification of patients into subgroups displaying distinct susceptibility to specific drug combinations. These results suggest that mechanistic systems modelling is a powerful approach for the rational design, prediction and prioritization of potent combination therapies for individual patients, thus providing a concrete step towards personalized treatment for TNBC and other tumour types.
预测能有效靶向癌细胞的药物组合是癌症治疗的一个关键挑战,尤其是对于三阴性乳腺癌(TNBC)而言,这是一种侵袭性很强的乳腺癌亚型,目前还没有有效的靶向治疗方法。由于信号通路网络对癌细胞的行为具有重要的控制作用,因此分析信号网络的活性和串扰可以帮助预测有效的药物组合,并对患者进行合理的分层,从而带来治疗和预后价值。我们之前已经表明,非受体酪氨酸激酶 PYK2 是 EGFR 和 c-Met 的下游效应物,并证明了它们在基底样 TNBC 中的串扰信号。在这里,我们应用了系统建模方法,并开发了一个整合的 EGFR-PYK2-c-Met 信号网络的机制模型,以识别和优先考虑 TNBC 的有效药物组合。通过实验数据验证的模型预测结果表明,在针对网络中心节点的六种潜在药物对组合中,包括 EGFR、c-Met、PYK2 和 STAT3,靶向 EGFR 和 PYK2 的共同靶向以及靶向 EGFR 和 c-Met 的靶向作用程度较小,产生了最强的协同作用。重要的是,共同靶向 EGFR 和 PYK2 的协同作用与开关样的细胞增殖相关反应有关。此外,使用 TNBC 患者的公共基因表达数据对患者特定模型进行模拟,导致对患者进行预测性分层,分为对特定药物组合具有不同敏感性的亚组。这些结果表明,基于机制的系统建模是为个体患者设计、预测和优先考虑有效联合治疗方案的强大方法,从而为 TNBC 和其他肿瘤类型的个性化治疗提供了具体步骤。