Suppr超能文献

通过直接氮化合成和计算机模拟掺杂设计实现高迁移率 p 型和 n 型氮化铜半导体。

High-Mobility p-Type and n-Type Copper Nitride Semiconductors by Direct Nitriding Synthesis and In Silico Doping Design.

机构信息

Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.

Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.

出版信息

Adv Mater. 2018 Aug;30(31):e1801968. doi: 10.1002/adma.201801968. Epub 2018 Jun 19.

Abstract

Thin-film photovoltaics (PV) have emerged as a technology that can meet the growing demands for efficient and low-cost large-scale cells. However, the photoabsorbers currently in use contain expensive or toxic elements, and the difficulty in bipolar doping, particularly in a device structure, requires elaborate optimization of the heterostructures for improving the efficiency. This study shows that bipolar doping with high hole and electron mobilities in copper nitride (Cu N), composed solely of earth-abundant and environmentally benign elements, is readily available through a novel gaseous direct nitriding reaction applicable to uniform and large-area deposition. A high-quality undoped Cu N film is essentially an n-type semiconductor, while p-type conductivity is realized by interstitial fluorine doping, as predicted using density functional theory calculations and directly proven by atomically resolved imaging. The synthetic methodology for high-quality p-type and n-type films paves the way for the application of Cu N as an alternative absorber in thin-film PV.

摘要

薄膜光伏 (PV) 已成为一种能够满足高效、低成本大规模电池日益增长需求的技术。然而,目前使用的光吸收剂含有昂贵或有毒元素,并且双极掺杂的难度,特别是在器件结构中,需要对异质结构进行精心优化,以提高效率。本研究表明,通过一种新颖的适用于均匀和大面积沉积的气态直接氮化反应,在由丰富且环保的元素组成的氮化铜 (CuN) 中实现高空穴和电子迁移率的双极掺杂是可行的。高质量的未掺杂 CuN 薄膜本质上是 n 型半导体,而通过间隙氟掺杂实现 p 型导电性,这是通过密度泛函理论计算预测并通过原子分辨成像直接证明的。高质量 p 型和 n 型薄膜的合成方法为将 CuN 用作薄膜 PV 的替代吸收剂铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验