Crovetto Andrea, Unold Thomas, Zakutayev Andriy
Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado80401, United States.
Department of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109Berlin, Germany.
Chem Mater. 2023 Jan 25;35(3):1259-1272. doi: 10.1021/acs.chemmater.2c03283. eCollection 2023 Feb 14.
Despite the recent surge in interest in Cu P for catalysis, batteries, and plasmonics, the electronic nature of Cu P remains unclear. Some studies have shown evidence of semiconducting behavior, whereas others have argued that Cu P is a metallic compound. Here, we attempt to resolve this dilemma on the basis of combinatorial thin-film experiments, electronic structure calculations, and semiclassical Boltzmann transport theory. We find strong evidence that stoichiometric, defect-free CuP is an intrinsic semimetal, i.e., a material with a small overlap between the valence and the conduction band. On the other hand, experimentally realizable Cu P films are always p-type semimetals natively doped by copper vacancies regardless of . It is not implausible that Cu P samples with very small characteristic sizes (such as small nanoparticles) are semiconductors due to quantum confinement effects that result in the opening of a band gap. We observe high hole mobilities (276 cm/(V s)) in Cu P films at low temperatures, pointing to low ionized impurity scattering rates in spite of a high doping density. We report an optical effect equivalent to the Burstein-Moss shift, and we assign an infrared absorption peak to bulk interband transitions rather than to a surface plasmon resonance. From a materials processing perspective, this study demonstrates the suitability of reactive sputter deposition for detailed high-throughput studies of emerging metal phosphides.
尽管最近人们对用于催化、电池和等离子体激元学的磷化铜兴趣激增,但磷化铜的电子性质仍不明确。一些研究显示了半导体行为的证据,而另一些研究则认为磷化铜是一种金属化合物。在此,我们试图基于组合薄膜实验、电子结构计算和半经典玻尔兹曼输运理论来解决这一困境。我们发现有力证据表明,化学计量比的、无缺陷的磷化铜是一种本征半金属,即一种价带和导带之间有小重叠的材料。另一方面,无论如何,实验上可实现的磷化铜薄膜总是由铜空位天然掺杂的p型半金属。由于量子限制效应导致带隙的打开,具有非常小特征尺寸(如小纳米颗粒)的磷化铜样品是半导体并非不合理。我们在低温下观察到磷化铜薄膜中的高空穴迁移率(276 cm²/(V·s)),这表明尽管掺杂密度高,但电离杂质散射率较低。我们报道了一种相当于伯斯坦 - 莫斯位移的光学效应,并将一个红外吸收峰归因于体带间跃迁而非表面等离子体共振。从材料加工的角度来看,这项研究证明了反应溅射沉积对于新兴金属磷化物详细高通量研究的适用性。